论文部分内容阅读
提出了一种基于支持向量机(SVM)模型对自然环境声音进行分类的方法。首先,提取Mel频率倒谱系数(MFCCs)来分析声音信号;其次,对自然环境的声音基于MFCC特征集建立SVM模型;最后,使用交叉验证的测试方法得到基于SVM算法的分类结果。使用SVM模型对50类自然环境中的声音进行分类的正确率可达99.5704%,分类效果明显优于K最近邻(KNN)和二分嵌套整合(END)这两种算法。