论文部分内容阅读
本文讨论了形如εy″=u(x,Y,ε)(y′)^2+v(x,Y,ε),0<X<1,y(0,ε)-P1y′(0,ε)=A(ε),y(1,ε)+P2y′(1,ε)=B(ε)的二次方程Robin问题奇摄动问题.通过引入不同量级的伸长变量,利用外部解和校正项相结合方法构造了本问题形式上的任意阶的渐近解,并利用微分不等式这一工具对所求得的解作出估计,得出一致有效的肯定结论.