论文部分内容阅读
针对传统人脸识别算法不能有效适用于智能移动终端的问题,提出一种基于经典SIFT算法的特征加权分簇匹配的轻量级改进方案,该方案能自动学习、自适应添加可靠的测试样本到训练样本空间,具有合理划分和科学权值分配特性,使该方案在识别率和运行时间上都有提高。改进算法分别在ORL人脸库和Yale人脸库做了测试,相对于经典SIFT算法识别率提升了6.13%和14.11%,运行效率提升了9.1%和4.7%。同时按照Zhou的测试方法,在ORL人脸库识别率达到74.05%,比PCA、LBP等经典算法都有明显的提升,并在