论文部分内容阅读
研究了专家系统结合神经网络BP算法在短期电力负荷预测中的应用。对神经网络BP算法进行改进,使用BP算法对咸阳电网实际负荷数据进行预测,并将预测值与实际负荷值进行比较,总结其长期的发展变化规律。同时汲取有关专家学者和专业预测人员的经验知识,形成一系列的规则集,从而模拟人类专家的决策过程进行推理和判断,形成一个专家系统,以此来改进采用单一BP算法进行预测的种种不足。结果表明,经验知识越成熟,推理规则越完备,对提高预测精度越有利,对神经网络BP算法的预测值进一步修正的可能性越大。