论文部分内容阅读
为了提高皮棉中白色异性纤维的识别精度,该文提出了一种基于改进混沌粒子群的白色异性纤维检测算法,该算法将图像的像素点按灰度值分为多类,把所有相邻类间方差看做一个粒子种群,以最大类间方差组作为种群适应度评价函数。通过滑动窗口技术判断算法是否陷入局部最优。有效克服了标准粒子群算法容易陷入局部最优的缺陷。通过试验验证,该文提出的算法对白色异性纤维的识别准确率达到98.6%。通过与标准二维Otsu算法的对比分割试验发现在分割较细小的白色异性纤维以及白色纤维与皮棉发生重叠的情况时,该算法的分割结果比标准二维Ot