Effect of different treatments on electrokinetic remediation of Zn,Pb and Cd from a contaminated cal

来源 :中国化学工程学报(英文版) | 被引量 : 0次 | 上传用户:phoebe_1012
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Electrokinetic remediation is a promising method to decontamination of the heavy metals from soils.In this paper,the remediation of a contaminated calcareous soil with Zn,Cd and Pb sampled from around Zanjan province of Iran,was investigated using electrokinetic method.In this paper,the soil contain a high concentration of Zn (1400 mg·kg-1),Cd (15 mg·kg-1) and Pb (250 mg·kg-1).Electrokinetic decon-tamination consists of two series of experiments as follows:(1) the effect of five treatments including the use of distilled water,acetic acid and EDTA electrolyte solutions,and approaching anodes systems,and the circulation flow of electrolyte at two different voltage gradient (i.e.1.33 and 2.66 V·cm-1),and(2) the effect of moisture content (saturated,FC and 0.7FC,FC indicated soil moisture at “Field Capacity”) with a voltage gradient of 1.33 V·cm-1.After applying electric current for 5 days,the results of experiments indicated that the removal efficiency of heavy metals can be increased by raising the volt-age gradient.In this matter,the highest remediation can be observed among different treatments in EDTA(Ethylene diamine tetra acetic acid) treatment (40.11%,43.10% and 24.7% for Zn,Cd and Pb,respectively).Moreover,the heavy metals removal at the saturated moisture was at the highest level so that 32.62%cadmium,31.33% zinc and 18.82% lead being removed after 120 h of electric current application.By decreasing moisture to 0.7FC,the removal percentage for the three heavy metals obtained 20.97%,18.44% and 12.25%,respectively.Furthermore,Cd had the highest removal,and Zn and Pb were next among the three heavy metals in question.
其他文献
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity co
As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,long-time rapid movement and chemical reaction.Exis
The inflammation can be stimulated by the surgical implantation and biomaterial presence through the foreign body via bio-interface.Macrophages play a key role in the interaction of host tissue to implant surfaces.In present study,the immuno-inflammatory
In recent years,synergistic chemo-photothermal therapy has revealed promising potential in treatments against various kinds of cancer.However,the development of superb photothermal agents with high drug loading capacity is still highly required.In this wo
The experimental solubility of sulfamonomethoxine in six different pure solvents (methanol,ethanol,1-propanol,l-butanol,ethyl acetate and acetone) and sulfamonomethoxine hydrate in acetone + water mixture solvents were measured from 294.55 K to 362.15 K b
Water pollution with dye chemicals from apparel industries is a serious problem in the world.Since most of dyes are potentially have toxic and carcinogenic effects on human,it is important to remove them before they are discharged to the environment.Among
Most non-viral carriers for in vitro delivery of nucleic acids suffer from low efficiency of introducing mRNA and other nucleic acids,especially large mRNA.Cas9 protein is the nuclease part of the powerful gene-editing tool,CRISPR/Cas9 system,Cas9 mRNA is
Antibiotic-resistant bacteria contamination in environments imposes great threats to human life health.This research aims to develop novel targeted antibacterial biochars for achieving high selectivity to kill pathogenic Escherichia coli (E.coli).The glyc
Immobilization is an effective method to promote the application of enzyme industry for improving the stability and realizing recovery of enzyme.To some extent,the performance of immobilized enzyme depends on the choice of carrier material.Therefore,the d
A series of triphenylethoxysilane (TPEOS)-modified nanosheet HZSM-5 catalysts (ZN-x,x =4%,8% and 16%,mass) were synthesized by chemical liquid deposition to selectively change external acidity distri-butions.TPEOS modification was found to passivate some