Methylcyclopentenyl cation mediated reaction route in methanol-to-olefins reaction over H-RUB-50 wit

来源 :能源化学 | 被引量 : 0次 | 上传用户:zooton2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Methylcyclopentenyl cations (MCP+) have been regarded as active intermediates during methanol conversion,however,their function mode in the reaction are still uncertain.In our recent report,trimethylcyclopentenyl cation (triMCP+) and its deprotonated counterpart (trimethylcyclopentadiene,triMCP) were directly captured on H-RUB-50 catalyst with small cavity by the aid of in situ 13C MAS NMR spectroscopy,and their higher catalytic reactivity were clarified by 12C/13C-CH3OH isotopic switch experiment.In this contribution,an alternative route-cyclopentadienes-based cycle was applied on methanol conversion catalyzed on the H-RUB-50,in which ethene was produced with the participation of triMCP+ as critical intermediate.Then the cyclopentadienes-based cycle was predicted to be energetically favorable for ethene formation by density functional theory (DFT) calculations.The energetic comparison of paring mechanism in the aromatics-based cycle and cyclopentadienes-based cycle with the involvements of trimethylcyclopentadienyl (triMCPdi+) and triMCP+ as the corresponding active intermediates suggests that cyciopentadienes-based cycle is a feasible route for ethene formation.Furthermore,this work highlights the importance of the steric constraint and the host-guest interaction induced by the zeolite with cavity structure in the formation of intermediates and reaction pathway.
其他文献
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts.As the microporous structure of the carbon substrate is generally regarded as the active site hosts,its hostility to electr
Cobalt oxides have been widely investigated as promising replacements for noble metal-based catalysts for oxygen evolution reaction (OER).Herein,we,for the first time,have obtained porous CoxOy nanosheets with N-doping and oxygen vacancies by etching Co3O
Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale.Here,we developed a facile spin-c
Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials (cathode) due to
Constructing heterostructure is an important strategy to design efficient electrocatalysts.The synergetic interaction between dissimilar materials has been considered as the origin of the activity enhancement,however,the interfacial interaction is challen
Non-noble metal-based catalysts, especially stable ones, have gained increasing attentions in the field of electronically catalytic hydrogen evolution reaction (HER). In this work, an N-doped carbon confined Co–Ni alloy with reduced graphene oxide (rGO) d
The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction (HER).Here,a xylose-based porous carbon is coupled with a
The oxide-zeolite process provides a promising way for one-step production of aromatics from syngas,whereas the reasons for the dramatic effect of intimacy between oxide and zeolite in the composite catalyst on the product selectivity are still unclear.In
Fabricating of high performance electrodes by a sustainable and cost effective method is essential to the development of vanadium redox flow batteries (VRFBs).In this work,an effective strategy is proposed to deposit carbon nanoparticles on graphite felts
We used a chemical reduction method to synthesize the catalysts of cobalt (Co) and cobalt-ruthenium (Co-Ru) bifunctional supported on carbon nanotubes (CNTs) for Fischer–Tropsch synthesis (FTS) in a fixed-bed reactor. These Co-Ru/CNTs catalysts were synth