论文部分内容阅读
现有的多标记特征选择一般假设特征空间是固定已知的,然而实际应用中很多特征是需要在提取过程中实时地进行筛选.为此,提出基于邻域交互增益信息的多标记在线流特征选择算法.首先,基于多标记邻域互信息和邻域交互增益信息提出在线相关性分析与在线冗余性分析两种策略来评价特征;其次,基于邻域交互增益信息构建了在线流多标记特征选择的目标优化函数;最后,在六个多标记数据集和四个评价指标上,实验结果证明了该算法的有效性和稳定性.