论文部分内容阅读
摘要:近几年高职数学课程被严重削减。针对有限的课时与完整课程体系的矛盾、基础课程与专业课程严重脱节的矛盾,本文结合数学课程改革的经验,分析了课程改革存在的问题,阐述了以面向专业为主线的思路及具体解决问题的方法。
关键词:面向专业;高职;数学课程;应用能力
中图分类号:G712文献标识码:A文章编号:1672-5727(2010)10-0070-02
高职数学教学如何满足专业人才培养要求,做到数学教学与专业有机融合,这是高职数学课程改革的重点和难点。近几年很多高职院校在数学课程改革方面做了很多尝试,我院的教学改革是从2003年开始,经过了6年多的教学改革与实践,找到了一条以“面向专业、突出应用能力培养”为理念的数学课程改革路线,将数学建模的思想和方法有机结合到高职数学课程中,在全院普及数学软件教学,既可培养学生应用数学方法分析问题的能力,又可培养学生借助计算机解决实际问题的能力。
高职数学课程面临的现状分析
高职教育与本科院校的人才培养目标存在很大差异,“以够用为原则”、“基于工作过程”等高职院校的教学目标与教学方法对高职数学课程的传统教学目标与方法提出了很大的挑战。很多高职院校的数学课程面临着被严重削减的情况,这种发展趋势既不利于数学课程的教学,也不利于全面提升学生素质,相反会导致数学教师对数学课程教学失去信心,同时学生对数学课程学习的兴趣也日益下降。在严峻的形势下,高职数学课程改革在很多学校开始被提上了日程。
我院高职数学课程改革解决的主要问题
教学改革的实施效果是需要经过几年的实践与探索才可以得到检验,因此选择改革方案时需要十分慎重。我院在改革过程中先后经过了个别专业试点教学——重点学院展开——最后推广到全院的三个阶段。根据教学体系的基本结构,主要解决了以下几个问题。
制定既服务于专业、又符合数学课程发展规律的课程目标面向专业、以够用为原则,通过专业走访、开展调研的方式了解数学课程在专业课程中的需求。但是很多专业教师所提出的需求往往是片面、不符合数学课程体系发展规律的。比如,经济学专业的教师认为他们只需要教会学生求导数就可以,这也是专业教师认为数学课程课时可以大量削减的原因。所以,在制定课程目标时要将专业需求与数学课程体系有机结合,既考虑到专业需求,又要符合数学课程体系的发展规律。
采用突出应用能力培养的教学方法与手段传统的数学课程教学模式主要是重视学生逻辑思维能力的培养,对于如何运用数学方法解决实际问题的能力培养方面相对忽视。但是高职教育把突出高职学生的实际应用能力提到了培养目标的首要位置,因此,如何通过课堂教学提升学生实际应用数学思想与方法解决实际问题的能力,变成课程改革的一个难点。高职学生的数学基础都比较薄弱,在有限的课时里消化数学课堂教學内容已经比较困难,更何况是应用数学解决实际问题。但近几年在全国影响日益扩大的数学建模竞赛为解决这个难题提供了一个突破口,可将数学建模思想与数学实验融入数学课程中去,采用“案例驱动”、“分层教学”等方法进行教学改革。在教学手段上,采用多媒体等多种形式,根据教学内容与对象不同选择相应的教学手段辅助教学。
编写适合高职学生的系列教材,建设学生自主学习的网络平台高职教育的快速发展还是近几年的事情,所以现有的教材大多是以本科院校学生为对象编写的。很多高职教师在选择教材时都发现一个同样的问题,对于高职学生而言,目前的教材难度普遍偏大,重理论、轻应用。所以,教材建设是一门课程改革不可缺少的重要环节。大学生的自学能力是后续发展的一个不可忽视的能力,因此,利用现代计算机技术建立精品课程也成为课程改革的一个重要环节。
完善教学评价体系,全面考核学生的综合素质要解决课时少而教学任务繁重的矛盾,不是靠简单删除某些模块可以实现的。淡化推理的同时,还要将一些繁琐的计算过程通过数学软件在计算机上实现。比如复杂的极限、导数求解问题,计算方法灵活多样的积分问题,繁琐的拉普拉斯变换问题等,原本需要好几个课时进行讲授的内容借助Matlab等数学软件可以直接在计算机上得出结果。这样一来,既解决了课时问题,又能为学生减负。为了配合以上的教学改革,考试机制也需要做相应的变化。理论部分可以采用笔试,数学实验部分采用上机考试,数学文化部分采用撰写小论文的形式。
我院数学课程改革的特点和取得的成效
组建教学团队,构建数学教师与专业教师交流的平台要真正实现数学与专业结合,培养“双师型”人才,就需要组建一个教学团队。而团队成员可以与专业教师或行业、企业的相关专家共同研究数学在不同专业中的应用,明确数学课程在专业人才培养中的地位与作用;也可以通过团队中的教师与专业教师一起负责案例项目收集,为数学课程教学积累素材;或者利用高职数学课程一个学期紧、一个学期松的特点,安排适量的教师到企业中去寻找数学与专业的结合点。
将数学建模的思想与方法融入课程,遵循循序渐进、由简单到复杂的规律数学学科能像一棵大树一样具有庞大的根系,能延伸到各个领域,原因在于它具有广泛的应用性。而数学建模这种独特的思想方法从若干实际问题出发——发现其中的规律——提出猜想——进行证明或论证,使枯燥的数学变得生动和实用。比如,以理财项目为案例介绍极限的应用,可以激发学生的学习兴趣,在完成微分模块的教学任务后,可以组织学生讨论易拉罐问题,开展从生活中发现数学问题的活动。但建模思想的渗透过程要遵循循序渐进、由简单到复杂的规律,应选择源于生活、易接受、有趣、实用的数学建模内容,不可让学生产生遥不可及的感觉。所以,应结合教学内容,以专业应用案例、企业生产实例及实际生活问题为载体,形成将数学建模思想与数学实验方法融入课程教学,集“教、学、用”于一体的教学模式。
建立系列竞赛机制,形成集“教、学、赛”于一体的学习氛围数学能力的提高是潜移默化、“润物细无声”的过程,要有效地让学生认识到自己在不断进步并及时发现自己的不足,最好的方法是借助竞赛机制。数学建模思想可以培养学生分析问题和解决问题的能力,提高学生数学素质。根据各个专业设置的教学内容,可以建立相应的竞赛项目,比如微积分竞赛(可以分经管类与工科)、数学建模竞赛、撰写数学小论文比赛、数学建模竞赛题目征集活动等。通过这些活动,学生学习数学的兴趣得到提高,也可以形成良好的学习氛围。再辅助开设各种数学选修课程,如专升本数学、自学考试数学、数学建模、数学文化等,使学生的后续学习能力得到进一步提高,符合高职培养应用型人才的目标。
按照以上的改革思路,目前我院已拥有了以“案例驱动”为背景的系列经济数学教材。教材中收集了大量的经济案例,教材体系的设置以模块形式出现,可满足高职院校进行模块教学的需要。同时也建立了“经济数学”国家精品课程,可从课堂教学、数学文化及数学建模三个方面为学生提供自学平台。
参考文献:
[l]张国勇.略论我国高职数学课程内容的改革[J].中国职业技术教育,2002,(23):53-54.
[2]徐茂良.在传统数学课中渗透数学建模思想[J].数学的实践与认识,2002,32(4):31-32.
[3]孔祥鹏.“工学结合”模式下高职数学课程的改革[J].中国成人教育,2009,(2):42-43.
[4]杨启帆,方道元.数学建模[M].杭州:浙江大学出版社,1999.
[5]尚寿亭,等.数学建模和数学实验的教学研究与素质教育实践[J].数学的实践与认识,2002,32(3):25-26.
[6]吴云宗,李冬玉.数学建模与素质教育[J].职教论坛,2004,(14):33-34.
作者简介:
刘莹,女,浙江温州人,硕士,浙江商业职业技术学院讲师,研究方向为数学教学与应用。
(本文责任编辑:尚传梅)
关键词:面向专业;高职;数学课程;应用能力
中图分类号:G712文献标识码:A文章编号:1672-5727(2010)10-0070-02
高职数学教学如何满足专业人才培养要求,做到数学教学与专业有机融合,这是高职数学课程改革的重点和难点。近几年很多高职院校在数学课程改革方面做了很多尝试,我院的教学改革是从2003年开始,经过了6年多的教学改革与实践,找到了一条以“面向专业、突出应用能力培养”为理念的数学课程改革路线,将数学建模的思想和方法有机结合到高职数学课程中,在全院普及数学软件教学,既可培养学生应用数学方法分析问题的能力,又可培养学生借助计算机解决实际问题的能力。
高职数学课程面临的现状分析
高职教育与本科院校的人才培养目标存在很大差异,“以够用为原则”、“基于工作过程”等高职院校的教学目标与教学方法对高职数学课程的传统教学目标与方法提出了很大的挑战。很多高职院校的数学课程面临着被严重削减的情况,这种发展趋势既不利于数学课程的教学,也不利于全面提升学生素质,相反会导致数学教师对数学课程教学失去信心,同时学生对数学课程学习的兴趣也日益下降。在严峻的形势下,高职数学课程改革在很多学校开始被提上了日程。
我院高职数学课程改革解决的主要问题
教学改革的实施效果是需要经过几年的实践与探索才可以得到检验,因此选择改革方案时需要十分慎重。我院在改革过程中先后经过了个别专业试点教学——重点学院展开——最后推广到全院的三个阶段。根据教学体系的基本结构,主要解决了以下几个问题。
制定既服务于专业、又符合数学课程发展规律的课程目标面向专业、以够用为原则,通过专业走访、开展调研的方式了解数学课程在专业课程中的需求。但是很多专业教师所提出的需求往往是片面、不符合数学课程体系发展规律的。比如,经济学专业的教师认为他们只需要教会学生求导数就可以,这也是专业教师认为数学课程课时可以大量削减的原因。所以,在制定课程目标时要将专业需求与数学课程体系有机结合,既考虑到专业需求,又要符合数学课程体系的发展规律。
采用突出应用能力培养的教学方法与手段传统的数学课程教学模式主要是重视学生逻辑思维能力的培养,对于如何运用数学方法解决实际问题的能力培养方面相对忽视。但是高职教育把突出高职学生的实际应用能力提到了培养目标的首要位置,因此,如何通过课堂教学提升学生实际应用数学思想与方法解决实际问题的能力,变成课程改革的一个难点。高职学生的数学基础都比较薄弱,在有限的课时里消化数学课堂教學内容已经比较困难,更何况是应用数学解决实际问题。但近几年在全国影响日益扩大的数学建模竞赛为解决这个难题提供了一个突破口,可将数学建模思想与数学实验融入数学课程中去,采用“案例驱动”、“分层教学”等方法进行教学改革。在教学手段上,采用多媒体等多种形式,根据教学内容与对象不同选择相应的教学手段辅助教学。
编写适合高职学生的系列教材,建设学生自主学习的网络平台高职教育的快速发展还是近几年的事情,所以现有的教材大多是以本科院校学生为对象编写的。很多高职教师在选择教材时都发现一个同样的问题,对于高职学生而言,目前的教材难度普遍偏大,重理论、轻应用。所以,教材建设是一门课程改革不可缺少的重要环节。大学生的自学能力是后续发展的一个不可忽视的能力,因此,利用现代计算机技术建立精品课程也成为课程改革的一个重要环节。
完善教学评价体系,全面考核学生的综合素质要解决课时少而教学任务繁重的矛盾,不是靠简单删除某些模块可以实现的。淡化推理的同时,还要将一些繁琐的计算过程通过数学软件在计算机上实现。比如复杂的极限、导数求解问题,计算方法灵活多样的积分问题,繁琐的拉普拉斯变换问题等,原本需要好几个课时进行讲授的内容借助Matlab等数学软件可以直接在计算机上得出结果。这样一来,既解决了课时问题,又能为学生减负。为了配合以上的教学改革,考试机制也需要做相应的变化。理论部分可以采用笔试,数学实验部分采用上机考试,数学文化部分采用撰写小论文的形式。
我院数学课程改革的特点和取得的成效
组建教学团队,构建数学教师与专业教师交流的平台要真正实现数学与专业结合,培养“双师型”人才,就需要组建一个教学团队。而团队成员可以与专业教师或行业、企业的相关专家共同研究数学在不同专业中的应用,明确数学课程在专业人才培养中的地位与作用;也可以通过团队中的教师与专业教师一起负责案例项目收集,为数学课程教学积累素材;或者利用高职数学课程一个学期紧、一个学期松的特点,安排适量的教师到企业中去寻找数学与专业的结合点。
将数学建模的思想与方法融入课程,遵循循序渐进、由简单到复杂的规律数学学科能像一棵大树一样具有庞大的根系,能延伸到各个领域,原因在于它具有广泛的应用性。而数学建模这种独特的思想方法从若干实际问题出发——发现其中的规律——提出猜想——进行证明或论证,使枯燥的数学变得生动和实用。比如,以理财项目为案例介绍极限的应用,可以激发学生的学习兴趣,在完成微分模块的教学任务后,可以组织学生讨论易拉罐问题,开展从生活中发现数学问题的活动。但建模思想的渗透过程要遵循循序渐进、由简单到复杂的规律,应选择源于生活、易接受、有趣、实用的数学建模内容,不可让学生产生遥不可及的感觉。所以,应结合教学内容,以专业应用案例、企业生产实例及实际生活问题为载体,形成将数学建模思想与数学实验方法融入课程教学,集“教、学、用”于一体的教学模式。
建立系列竞赛机制,形成集“教、学、赛”于一体的学习氛围数学能力的提高是潜移默化、“润物细无声”的过程,要有效地让学生认识到自己在不断进步并及时发现自己的不足,最好的方法是借助竞赛机制。数学建模思想可以培养学生分析问题和解决问题的能力,提高学生数学素质。根据各个专业设置的教学内容,可以建立相应的竞赛项目,比如微积分竞赛(可以分经管类与工科)、数学建模竞赛、撰写数学小论文比赛、数学建模竞赛题目征集活动等。通过这些活动,学生学习数学的兴趣得到提高,也可以形成良好的学习氛围。再辅助开设各种数学选修课程,如专升本数学、自学考试数学、数学建模、数学文化等,使学生的后续学习能力得到进一步提高,符合高职培养应用型人才的目标。
按照以上的改革思路,目前我院已拥有了以“案例驱动”为背景的系列经济数学教材。教材中收集了大量的经济案例,教材体系的设置以模块形式出现,可满足高职院校进行模块教学的需要。同时也建立了“经济数学”国家精品课程,可从课堂教学、数学文化及数学建模三个方面为学生提供自学平台。
参考文献:
[l]张国勇.略论我国高职数学课程内容的改革[J].中国职业技术教育,2002,(23):53-54.
[2]徐茂良.在传统数学课中渗透数学建模思想[J].数学的实践与认识,2002,32(4):31-32.
[3]孔祥鹏.“工学结合”模式下高职数学课程的改革[J].中国成人教育,2009,(2):42-43.
[4]杨启帆,方道元.数学建模[M].杭州:浙江大学出版社,1999.
[5]尚寿亭,等.数学建模和数学实验的教学研究与素质教育实践[J].数学的实践与认识,2002,32(3):25-26.
[6]吴云宗,李冬玉.数学建模与素质教育[J].职教论坛,2004,(14):33-34.
作者简介:
刘莹,女,浙江温州人,硕士,浙江商业职业技术学院讲师,研究方向为数学教学与应用。
(本文责任编辑:尚传梅)