论文部分内容阅读
针对标准反向传播(back propagation,BP)神经网络负荷预测精度不高的缺点,提出利用贝叶斯正则化算法来改善模型的泛化能力,根据河源电网负荷容易受天气影响等特点,给出一种分层的贝叶斯神经网络预测模型,预测结果表明,新的模型具有更好的泛化能力,应用效果良好,提高了负荷预测准确率。