沟槽微结构尺寸对高速列车横风特性影响研究

来源 :空气动力学学报 | 被引量 : 0次 | 上传用户:zsh188667787
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着列车运行速度的不断提升,气动效应对列车运行安全性产生的影响越来越突出.目前针对高速列车横风效应的研究通常假定列车表面光滑,实际上列车表面是非光滑的,边界层内的流动特性有所不同.利用微结构进行非光滑表面设计的新型技术手段可能改善高速列车在横风条件下的气动性能.以在车顶加设矩形条带组的方式,对1:25比例的列车模型进行局部非光滑设计;采用改进的延迟分离涡模拟(IDDES)方法对横风作用下光滑表面和粗糙表面的列车模型进行气动性能模拟.结果表明,与光滑模型相比,粗糙模型下的侧向力系数和倾覆力矩系数分别降低了3.71?%和10.56?%.选取条带的宽度、高度和长度为设计变量,基于正交试验设计方法设计不同的数值模拟方案,利用方差分析和极差的方法探索矩形条带几何参数与列车侧向力和倾覆力矩间的关系,给出条带外形设计的优选方案.本研究可为横风作用下如何提升高速列车的气动性能提供理论依据.
其他文献
利用吉林省西部10个自动土壤水分观测站数据与人工取土烘干法实测土壤湿度数据,制作吉林省西部土壤墒情监测及干旱预报模型。结果表明:不同气候背景下在作物不同生育期、土壤不同深度、不同初始湿度下的土壤湿度的变化趋势大致相同,但在相同的无降水日数或降水量时,不同台站不同深度的土壤湿度变化率却有一定的差异。各站农田土壤初始湿度越大,无降水时初期墒情下降速率越明显;而土壤湿度初始值越低,则失墒速率越慢。土壤不
为了改进现有的基于聚类分析的流场结构特征分析方法,使之更加适用于结构风工程领域的风场特征识别与分析,依托聚类分析的思想,结合一种基于密度的OPTICS聚类算法,并引入相关距离的概念替换了原算法中的欧氏距离,提出了采用一种基于相关距离的OPTICS聚类算法进行流场结构特征分析.实例分析利用基于大涡模拟的计算流体动力学数值模拟,对低雷诺数下经典圆柱绕流问题进行了瞬态求解,获取了2000个圆柱尾流中顺流向涡的瞬态涡量场样本.然后,以识别圆柱尾流中的顺流向涡旋涡脱落状态和顺流向涡A模式展向分布为目标,对比了k-m
利用1961—2020年气温、降水资料,通过线性趋势分析和M-K检验方法,对吉林省冰冻期气温、降雪变化进行研究.结果表明:冰冻期在20世纪80年代以前的29a冰冻期日数较多,以晚结束为主;近30a,冰冻期日数偏少,以早结束为主.出现0℃及以下日数分布特征是,在20世纪80年代中期以前,以正距平为主;80年代中期以后以负距平为主;随着年代的增加,出现的日数呈现减少趋势.降雪量的年代变化特征不明显,只有2008—2007年连续10a出现了多雪年份.从降雪日数的分布情况看,多雪日和少雪日交替出现,无明显变化特征
用翔实的数据给出了2020年吉林省作物生长季气象条件,在此基础上讨论了气象条件对农业生产的影响.2020年吉林省农业生长季气温稍高,积温偏多,无霜期长,降水、日照偏多,全省大部第一场透雨早,农业气象条件阶段性变化明显,春季播种至玉米拔节期水热条件匹配好,农作物关键期生长状况较好;7月出现持续高温少雨天气,水热匹配较差,中西部部分地方出现农业干旱,影响旱田作物生长发育;8月下旬—9月上旬吉林省先后遭遇台风“巴威”“美莎克”和“海神”三连击,导致农田发生渍涝、大风倒伏等灾害,对玉米后期灌浆、产量形成以及秋收进
建立了一种基于内嵌物理机理神经网络(PINN)的热传导方程的正问题及逆问题求解方法.该方法利用自动微分技术将一维热传导方程嵌入到深度网络的损失函数中,通过以损失函数最小为目标来优化深度网络,求解一维热传导方程以及对方程中的未知导热系数进行辨识.随后,分析了基于PINN求解正问题的收敛精度以及参数辨识的鲁棒性,并得出以下结论:在给定网络结构的情况下,基于PINN求解一维热传导方程的收敛误差在样本点数较少时主要由采样误差主导,而当样本点数较多时,收敛误差由优化误差主导;由于损失函数中包含了方程相关的正则化项,
利用Fluent动网格技术,对高速列车通过圆形全封闭声屏障产生的压力波和出口微气压波开展数值模拟研究.研究结果表明:列车通过圆形全封闭声屏障时,声屏障壁面风压变化过程与压缩波和膨胀波的产生、传播及反射有关,压缩波传播到壁面测点时压力上升,膨胀波传播至壁面测点时,压力下降;在声屏障横截面上,靠近列车的测点压力极值大于远离列车的测点压力极值,最大差异量达到28%;声屏障壁面压力变化幅值、车头鼻尖压力最大值与车速的二次方近似呈正比关系;与隧道结构类似,列车以较高的速度通过声屏障时,将在声屏障出口产生微气压波,微
扑翼获能器是一种模仿飞鸟振翅扑动的新型获能装置.为提高扑翼的获能效率,建立了一种带有尾缘襟翼的扑翼模型,且该种襟翼在扑翼运行过程中始终向翼型压力面偏转,利用计算流体力学方法求解了二维不可压缩非稳态Navier-Stokes方程.在雷诺数Re?=?4.7×105的工况下,分析了尾缘襟翼对扑翼流场的作用机理,并与原始翼型扑翼进行了对比.同时,还研究了翼型厚度对具有尾缘襟翼扑翼获能的影响.结果表明:扑翼升沉力做功占其获能的主要部分,应用尾缘襟翼后,扑翼的升沉力在整个扑动周期内都得到了提高,并且升沉力与升沉速度的
为探究桥上运动列车穿越龙卷风风场时其周围瞬态流场的流动特性,通过数值方法开展了恶劣环境下的车桥耦合气动特性研究,以保障列车的运行安全.采用三维、不可压N-S方程和工程上应用广泛的k-ε湍流模型,以及滑移网格技术,对桥上运动列车沿不同横向中心间距和不同运行速度穿越龙卷风风场时,其表面压力分布及气动载荷变化情况进行了计算分析.结果表明:1)列车的表面压力系数随列车与龙卷风中心的横向间距增加而表现出减小的趋势,且背风侧的压力系数较之迎风侧更为显著;2)随列车沿纵向方向靠近风场中心,其附近的压力分布呈现由对称分布
短距起降运输机对增升装置提出了更高要求,常规机械式增升装置已无法满足,内吹式襟翼系统是当今固定翼飞机最有效的动力增升形式.为推动该技术的工程应用,基于雷诺平均N-S方程,对某加装60°偏角无缝襟翼的亚声速翼型在环量控制作用下的流场进行数值模拟,研究了其在不同吹气动量系数下的气动特性及流动形态,分析了不同环量控制阶段增升机理、失速特性和吹气动量系数对失速特性影响规律.结果表明:内吹式襟翼增升控制效率(升力系数增量与吹气动量系数的比值)较高,在临界吹气动量系数下可达70,此时相较于无吹气状态,升力增加约125
伴随着激波、膨胀波等波系的综合作用,真空管道高速列车诱发的气动热效应十分明显.初始环境直接关系到管内列车气动性能的好坏,研究环境初始温度对真空管道高速列车气动特性的影响对未来真空管道列车运输系统的研发具有重要意义.在建立含动边界的准二维非定常数值计算模型的基础上,通过分子动理论描述气流物性变化,利用SST?k-ω转捩模型预测层流-湍流的混合流动状态,结合动网格技术实现了管内列车的跨音速运动,研究了273.15?K、300?K、350?K、400?K的初始环境温度下列车的气动特性变化.结果表明,随着初始环境