论文部分内容阅读
随着大数据时代的到来,对异构和分布式的模糊XML数据管理显得越来越重要。在模糊XML数据的管理中,模糊XML文档的分类是关键问题。针对模糊XML文档的分类,提出采用双隐层极限学习机模型来实现模糊XML文档自动分类。这个模型可以分为两个部分:第一层采用极限学习机提取模糊XML文档的相应特征,第二层利用核极限学习机根据这些特征进行最终的模糊XML文档分类。通过实验验证了所提方法的性能优势。首先对主要的调节参数包括隐藏层节点的数目L,常量C和核参数γ进行了研究,接下来的对比实验说明提出的基于双隐层ELM(Ext