论文部分内容阅读
摘要:信息可视化是可视化技术在非空间数据领域的应用,可以增强数据呈现效果,让用户以直观交互的方式实现对数据的观察和浏览,从而发现数据中隐藏的特征、关系和模式。可视化应用非常广泛,主要涉及领域:数据挖掘可视化、网络数据可视化、社交可视化、交通可视化、文本可视化、生物医药可视化等等。根据Card可视化模型可以将信息可视化的过程分为以下几个阶段:数据预处理;绘制;显示和交互。根据Ben Shneiderman的分类,信息可视化的数据分为以下几类:一维数据、二维数据、三维数据、多维数据、时态数据、层次数据和网络数据。其中针对后四种数据的可视化是当前研究的热点。
多维数据可视化方法主要包括基于几何的方法、图标方法和动画方法等。基于几何的可视化方式中最经典的就是“平行坐标系”方法。平行坐标系(parallel coordinates)使用平行的竖直轴线来代表维度,通过在轴上刻划多维数据的数值并用折线相连某一数据项在所有轴上的坐标点展示多维数据。平行坐标系方法能够简洁、快速地展示多维数据,发展出很多改进技术。但是当数据集的规模变得非常大时,密集的折线会引起“视觉混淆”(visual clutter),处理方法包括维度重排、交互方法、聚类、过滤、动画等。其他基于几何的方法包括Radviz方法使用圆形坐标系展示可视化结果;散点图矩阵(scatter plot matrix)将多维数据中的各个维度两两组合绘制成一系列的按规律排列的散点图。基于图标的可视化方法用具备可视特征的几何形状如大小、长度、形状、颜色等刻画数据,代表性的方法包括星绘法和Chernoff 面法等。动画方法用于可视化中可被用来提高交互性和理解程度,其缺点包括可能分散注意力、引起用户的误解、产生“图表垃圾”等。
时间序列数据是指具有时间属性的数据集,针对时间序列数据的可视化方法如下:线形图、堆积图、动画、地平线图、时间线。
层次数据具有等级或层级关系。层次数据的可视化方法主要包括节点链接图和树图2种方式。其中树图(treemap)由一系列的嵌套环、块来展示层次数据。为了能展示更多的节点内容,一些基于“焦点+上下文”技术的交互方法被开发出来。包括“鱼眼”技术、几何变形、语义缩放、远离焦点的节点聚类技术等。
网络数据具有网状结构。自动布局算法是网络数据可视化的核心,目前主要有以下3类:一是力导向布局(forcedirected layout);二是分层布局(hierarchical layout);三是网格布局(grid layout)。当数据节点的连接很多时,容易产生边交叉现象,导致视觉混淆。解决边交叉现象的集束边(edge bundle)技术可以分为以下几类:力导向的集束边技术、层次集束边技术、基于几何的边聚类技术、多层凝聚集束边技术和基于网格的方法等。
其他研究热点包括图形的视觉因素研究、自适应可视化研究、可视化效果的评估等。
视觉因素对于可视化效果的影响,如位置、长度、面积、形状、色彩等影响已经引起很多研究者的注意。色彩是视觉因素的重要组成部分,研究主要集中在颜色选择的原则和交互系统中。这些原则基于数据类型、类的数量、认知约束等。
自适应可视化可以提高信息可视化的适应性。根据Domik & Gutkauf和Grawemeyer & Cox的研究成果为以下几类:自适应可视化展示、自适应资源模型、自适应用户模型。自适应可视化展示是指根据用户的特征自动为用户提供多种展示类型,自动选择可视化内容及布局的形式,自动调整可视化的元素等。自适应资源模型反映了对硬件和软件的利用以提高可视化性能。自适应用户模型通过显示用户模型的内容并让用户能够编辑,从而让用户能够控制模型的内容。
Morse等指出当前关于信息可视化评价的研究较少,少量研究也没有提出直接和通用的可视化的评估方式,需要对信息可视化评价的理论基础、方法和应用做深入的研究。
可视化技术与应用还应该继续向以下4个方面努力:直观化、关联化、艺术化、交互化。戴国忠等认为信息可视化技术的发展方向是协同(Collaboration)、分析过程(Analytics)、计算(Computational)和意会(Sense-making)。未来研究方向可以包括以下几个内容。
信息可视化和数据挖掘的紧密结合。为提高处理海量数据时的速度和效率和解决视觉混淆现象;必须运用数据挖掘的公式和算法,对数据分析的过程及结果进行可视化展现。
协同可视化。协同可视化领域的研究方向可以包括可视化接口设计、基于Web的可视化协同平台开发、协同可视化工作的视图设计、协同可视化中的工作流管理及协同可视化技术的应用等。
更多领域的应用技术开发。包括统计可视化:需要研究使用几何、动画、图像等工具对数据统计的过程和结果进行加工和处理的技术;新闻可视化:对新闻内容进行抓取、清洗和提取和可视化展示;社交网络可视化:可视化方式显示社交网络的数据,对社交网络中节点、关系及时空数据的集成展示。搜索日志可视化:针对在使用搜索引擎时产生的海量搜索日志,可视化的展现用户的搜索行为、关系和模式等。
关键词:信息可视化;可视化技术;人机交互;数据挖掘
中图分类号:TP391文献标志码:A
可视化技术起源于20世纪80年代出现的科学计算可视化[1]。“信息可视化”一词最早出现在Robertson,Card和Mackinlay在1989 年发表的文章《用于交互性用户界面的认知协处理器》中[2]。信息可视化是可视化技术在非空间数据领域的应用,是将数据信息转化为视觉形式的过程,可以增强数据呈现效果,让用户以直观交互的方式实现对数据的观察和浏览,从而发现数据中隐藏的特征、关系和模式。信息可视化的图表形式最早出现于18世纪,历史和政治学家W.Playfair和数学家J.H.Lambert首次创建了可视化图表,他们认为将复杂的数据转化为图表可以帮助我们了解数据。19世纪的法国科学家J.Minard和E.J.Marey首次采用非纯手工方式绘制了图表[3]。进入20世纪,现在计算机技术的进步拓展了数据处理的能力并且可以提供多种交互方式,使得用户可以更便利的观察自己感兴趣的数据,可视化应用也更加广泛,主要领域涉及:数据挖掘可视化、网络数据可视化、社交可视化、交通可视化、文本可视化、生物医药可视化等等。 [5]陈建军,于志强,朱昀. 数据可视化技术及其应用[J]. 红外与激光工程, 2001,30(5): 339342.
CHEN Jianjun, YU Zhijiang, ZHU Yun. Data visualization and its applications [J]. Infrared and Laser Engineering, 2001, 30(5): 339342.
[6]任磊,王维信, 周明骏,等.一种模型驱动的交互式信息可视化开发方法[J].软件学报,2008, 19(8):1 9471 964.
REN Lei, WANG Weixin, ZHOU Mingjun, et al. A model driven development method for interactive information visualization[J]. Journal of Software, 2008, 19(8): 1 9471 964.
[7]刘大海.海量数据可视化方法的研究[D].天津:天津大学,2009.
LIU Dahai. The Research of Largescale Data Visualization[D]. Tianjin: Tianjin:Tianjin University, 2009.
[8]SHNEIDERMAN B. The eyes have it: a task by data type taxonomy for information visualizations[C]//Visual Languages, 1996. Proceedings. IEEE Symposium on, 1996: 336343.
[9]INSELBERG A. NDimensional coordinates [J]. Proceedings of the Workshop on Picture Data Description & Management,1980 ( August).
[10]孙扬,封孝生,唐九阳,等.多维可视化技术综述[J].计算机科学,2008, 35(11):17, 59.
SUN Yang, FENG Xiaosheng, TANG Jiuyang, et al. Survey on the research of multidimensional and multivariate data visualization [J]. Computer Science, 2008, 35(11): 17, 59.
[11]INSELBERG A, DIMSDALE B. Parallel coordinates: a tool for visualizing multidimensional geometry[C]//Visualization, 1990. Visualization '90., Proceedings of the First IEEE Conference on, 1990: 361378.
[12]杨峰,李月华.高维信息可视化方法研究综述[J].情报理论与实践,2012, 35(9):125128.
YANG Feng, LI Yuehua. Review of multidimensional information visualization [J]. Information Studies: Theory & Application, 2012, 35(9): 125128.
[13]YINGHUEY F, WARD M O, RUNDENSTEINER E A. Hierarchical parallel coordinates for exploration of large datasets[C]//Visualization '99. Proceedings, 1999: 43508.
[14]GRAHAM M, KENNEDY J. Using curves to enhance parallel coordinate visualizations[C]//Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on, 2003: 1016.
[15]盛秀杰,金之钧,王义刚.一种新的面向多元统计分析的信息可视化技术[J].石油地球物理勘探,2013, 48(3):488496, 506, 332.
SHENG Xiujie, JIN Zhijun, WANG Yigang. A novel information visualization approach for multiple statistical analysis[J]. Oil Geophysical Prospecting, 2013, 48(3): 488496, 506, 332.
[16]SIIRTOLA H. Direct manipulation of parallel coordinates[C]//Information Visualization, 2000. Proceedings. IEEE International Conference on, 2000: 373378.
[17]PAK C W, BERGERON R D. Multiresolution multidimensional wavelet brushing[C]//Visualization '96. Proceedings. 1996: 141148. [18]H HAUSER F L, DOLEISCH H. Angular brushing of extended parallel coordinates[C]//In Proceedings of the IEEE InfoVis'02, 2002: 127130.
[19]N WONG S C, GREENBERG S. Edge lens: an interactive method for managing edge congestion in graphs[C]//In Proceedings of the IEEE InfoVis'03, 2003: 5158.
[20]ZHOU Hong, YUAN Xiaoru, QU Huamin, et al. Visual clustering in parallel coordinates [J]. Computer Graphics Forum, 2008, 27(3): 1 0471 054.
[21]BERTINI E, DELL L. Aquila,and G.santucci.SpringView:cooperation of radviz and parallel coordinates for view optimization and clutter reduction [C]//In Proceedings of CMV’05, Jul. 2005: 2229.
[22]YANG J, PENG W, WARD M O, et al. Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets[C]//INFOVIS 2002: IEEE Symposium on Information Visualization 2003, PROCEEDINGS, 2003: 105112.
[23]JOHANSSON J, LJUNG P, JERN M, et al. Revealing structure within clustered parallel coordinates displays[C]//Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on, 2005: 125132.
[24]JOHANSSON J, COOPER M. A screen space quality method for data abstraction[J]. Computer Graphics Forum, 2008, 27(3): 10391046.
[25]SHEARER J, OGAWA M, KWANLIU M, et al. Pixelplexing: gaining display resolution through time[C]//Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific, 2008: 159166.
[26]KANDOGAN E. Visualizing multidimensional clusters, trends, and outliers using Star Coordinates[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco, CA, United states, 2001: 107116.
[27]CRAIG P, KENNEDY J. Coordinated graph and scatterplot views for the visual exploration of microarray timeseries data[C]//Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on, 2003: 173180.
[28]SCHMID C, HINTERBERGER H. Comparative multivariate visualization across conceptually different graphic displays[C]// In Proceedings of SSDBM’ 94, 1994: 4251.
[29]ANDREWS D F. Plots of high dimensional data[J]. International Journal of Biometrics, 1972, 28(1): 125136.
[30]CHERNOFF H. The use of faces to represent points in kdimensional space graphically[J]. Journal of the American Statistical Association, 1973(68): 361368.
[31]LEE M D, BUTAVICIUS M A, REILLY R E. Visualizations of binary data: A comparative evaluation[J]. International Journal of Humancomputer Studies, 2003, 59(5): 569602. [32]ROBERTSON G, CARD S K, MACKINLAY J D. Cone trees:animated 3D visualizations of hierarchical information[C]// In Proc. ACM CHI 1991[C], New Orleans, LA, Apr 1991:189194.
[33]HEER J, ROBERTSON G G. Animated transitions in statistical data graphics[C]// IEEE transaction on visualization and computer graphics, November/December 2007,13(6): 12401247.
[34]ROBERTSON G, CAMERON K, CZERWINSKI M, et al. Animated visualization of multiple intersecting hierarchies[J]. Journal of Information Visualization, 2002, 1(1): 5065.
[35]PLAISANT C, GROSJEAN J, BEDERSON B B.. SpaceTree: Supporting Exploration in a Large NodeLink Tree, Design Evolution and Empirical Evaluation [C]// In Proc. IEEE InfoVis 2002, Oct. 2002:5764.
[36]HEER J, CARD S K. DOITrees Revisited: Scalable, SpaceConstrained Visualization of Hierarchical Data[C]// In Proc. Advanced Visual Interfaces, 2004: 421424.
[37]WATTENBERG M, KRISS J. Designing for social data analysis[C]// IEEE Trans. on Visualization and Computer Graphics, 2006, 12(4):549557.
[38]GAPMINDER[ED/OL]. http://www.gapminder.org .
[39]TUFTE E. The Visual Display of Quantitative Information[M]. [S.l.]: Graphics Press, 1983.
[40]SAITO T, MIYAMURA H N. TwoTone PseudoColoring:compact visualization for OneDimensional data[J]. Proc.IEEE InfoVis,Oct, 2005: 173180.
[41]JEFFREY HEER N K, AGRAWALA M. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations [J]. ACM Human Factors in Computing Systems (CHI), 2009: 1 3031 312.
[42]KIM N W, STUART K C, JEFFREY H .Tracing Genealogical Data with TimeNets[C]// In proceeding of: Proceedings of the International Conference on Advanced Visual Interfaces, AVI 2010, 2010:2628.
[43]SPENCE R, APPERLEY M D. Database navigation:An office environment for the professional[J]. Behavior and Information Technology, 1982(1): 4354.
[44]MACKINLAY J D R G, CARD S K. The perspective wall: detail and context smoothly integrated[C]// In Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology, 1991:173176.
[45]JENSEN M. Visualizing Complex Semantic Timelines[Z]. NewsBlip Technical Report NBTR2003001, http://newsblip.com
[46]ROBERTSON U, MACKINLAY J D, CARD S K. Cone trees: animated 3D visualizations of hierarchical information [Z], 1991: 189194.
[47]张昕,袁晓如.树图可视化[J].计算机辅助设计与图形学学报,2012, 24(9):1 1131 124. ZHANG Xin, YUAN Xiaoru. Treemap visualization [J]. Journal of Computeraided Design & Computer Graphics, 2012, 24(9): 1 1131 124.
[48]CARD S K, PALO A R, CENTER CA,et al.Time tree:Exploring time changing hierarchies[C]//IEEE Symposium On Visual Analytics Science And Technology, 2006: 310.
[49]SELASSIE D, HELLER B, HEER J. Divided edge bundling for directional network data[C]//IEEE Trans Vis Comput Graph,2011,17(12):2 3542 363.
[50]BERTIN J. Sémiologie graphique,GauthierVillars:Paris,1967.English translation by W.J.Berg as semiology of graphics[Z], 1983.
[51]CLEVELAND W S, MCGILL R. Graphical perception:theory,experimentation,and application to the development of graphical methods[J]. Journal of the American Statistical Association, 1984, 79(387): 531554.
[52]SIMKIN D, HASTIE R. An informationprocessing analysis of graph perception[J]. Journal of the American Statistical Association, 1987, 82(398): 454465.
[53]TALBOT J, LIN S, HANRAHAN P. An extension of Wilkinson's algorithm for positioning tick labels on axes[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1 0361 043.
[54]L L B. TREINISH L A.A rulebased tool for assisting colormap selection[J]. Proc.IEEE Visualization, 1995: 118125.
[55]HARROWER M, BREWER C. Colorbrewer.org: An online tool for selecting color schemes for maps[J]. The Cartographic Journal, 2003, 40(1): 2737.
[56]MEIER B J, SPALTER A M, KARELITZ D B. Interactive color palette tools[J]. Computer Graphics and Applications,IEEE, 2004, 24(3): 6472.
[57]D COHENOR O S, XU Yq. Color harmonization[Z]. In ACM SIGGRAPH, 2006:624630.
[58]HEER J, STONE M. Color naming models for color selection, image editing and palette design[C]//30th ACM Conference on Human Factors in Computing Systems, CHI 2012, 2012: 1 0071 016.
[59]WANG L J, GIESEN J, MCDONNELL K T, et al. Color design for illustrative visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1 7391 746.
[60]CHUANG J, WEISKOPF D, MOELLER T. Energy aware color Sets[J]. Computer Graphics Forum, 2009, 28(2): 203211.
[61]B PREIM P R, THEISEL H. Selecting SemanticallyResonant colors for data visualization[J]. Computer Graphics Forum (Proc. EuroVis), 2013.
[62]ROUSSINOV D, RAMSEY M. Information forage through adaptive visualization[C]//Proceedings of the 1998 3rd ACM Conference on Digital Libraries, 1998: 303304.
[63]DOMIK G O, GUTKAUF B. User modeling for adaptive visualization systems[C]//Proceedings of the 1994 IEEE Visualization Conference, 1994: 217223. [64]GRAWEMEYER B, COX. A bayesian approach to modelling users'information display preferences[Z], 2005: 225230.
[65]TERAOKA T, MARUYAMA. Adaptive information visualization based on the user's multiple viewpointsinteractive 3d visualization of the www.In Proceedings of the 1997 IEEE symposium on information visualization(InfoVis'97)[Z], 1997: 2528.
[66]BITTON E. A spatial model for collaborative filtering of comments in an online discussion forum[C]//3rd ACM Conference on Recommender Systems, RecSys'09, 2009: 393396.
[67]GANSNER E, HU Y, KOBOUROV S, et al. Putting recommendations on the map Visualizing clusters and relations[C]//3rd ACM Conference on Recommender Systems, RecSys'09, 2009: 345348.
[68]BRUSILOVSKY P, RIZZO. Using maps and landmarks for navigation between closed and open corpus hyperspace in Webbased education[Z], 2002: 5982.
[69]MEYER J, GELDER S, KRETSCHMER K, et al. Interactive visualization of hybrid medical data sets[C]//WSCG `97: The Fifth International Conference in Central Europe on Computer Graphics and Visualization `97, Conference Proceedings, 1997, 14: 371380.
[70]GALLOP J R, BLAIR G S, COOPER C S, et al. Investigating a componentoriented approach to adaptive collaborative visualization[C]//Visualization and Data Analysis 2002, 2002: 99104.
[71]LIU H H, JI Q G. Research on adaptive rendering based on visual acuity equations[C]//Fourth International Conference on Virtual Reality and its Applications in Industry, 2004: 9699.
[72]BRUSILOVSKY P. Methods and techniques of adaptive hypermedia[J]. User Modeling and Useradapted Interaction, 1996, 6(2/3): 87129.
[73]WOJCIECH W, KRZYSZTOF W, WOJCIECH C. Adaptive 3D interfaces for search result visualization[C]//Proc.of IADIS International Conference eSociety 2003, 2003: 365372.
[74]AHN J W, BRUSILOVSKY P, GRADY J, et al. Open user profiles for adaptive news systems: Help or harm[C]//16th International World Wide Web Conference, WWW2007.AB,Canada, 2007: 1120.
[75]BAKALOV F, K?NIGRIES B, NAUERZ A, et al. IntrospectiveViews: an interface for scrutinizing semantic user models[C]//18th International Conference on User Modeling, Adaptation and Personalization, UMAP 2010, 2010: 219230.
[76]KUMP B, SEIFERT. MyExperiences:visualizing evidence in an open learner model[C]//In Adjunct proceedings of the 18th international conference on user modeling, 2010: 1618.
[77]AHN J W, BRUSILOVSKY P. Adaptive visualization for exploratory information retrieval[J]. Information Processing&Management, 2013, 49(5): 1 1391 164. [78]MORSE E, LEWIS M, OLSEN K A. Evaluating visualizations: Using a taxonomic guide[J]. International Journal of Humancomputer Studies, 2000, 53(5): 637662.
[79]MEYER J. Performance with tables and graphs: effects of training and a Visual Search Model[J]. Ergonomics, 2000, 43(11): 1 8401 865.
[80]FREITAS. Evaluating usability of information visualization techniques[C]//5th Symposium on Human Factors in Computer Systems, 2002: 4051.
[81]PURCHASE C H. Effects of graph layout[C]//Proceedings of OZCHI 98.Adelaide,Australia, 1998: 8086.
[82]Dowell, J, Long, et al. Conception of the cognitive engineering design problem[J]. Ergonomics, 1998, 41(2): 126140.
[83]杨峰,李蔚.评价信息可视化技术的指标研究[J].图书情报知识,2007(4):8084.
YANG Feng, LI Wei. The research of indexes for evaluating information visualization techniques[J]. Document,Information & Knowledge, 2007(4): 8084.
[84]MICHAEL D L, MARCUS A B, RACHEL E R. Ten guidelines for effective data visualization in scientific publications. Int. J. HumanComputer Studies, 2003,59:569602.
[85]戴国忠,陈为,洪文学,等.信息可视化和可视分析:挑战与机遇——北戴河信息可视化战略研讨会总结报告[J].中国科学:信息科学,2013, 43(1):178184.
DAI Guozhong, CHEN Wei, HONG Wenxue, et al. Information visualization and visual analytics:challenges and opportunities[J]. China Science, 2013, 43(1): 178184.
[86]任永功,于戈.数据可视化技术的研究与进展[J].计算机科学,2004, 31(12):9296.
REN Yonggong, YU Ge. Research and development of the data visualization techniques[J]. Computer Science, 2004, 31(12): 9296.
多维数据可视化方法主要包括基于几何的方法、图标方法和动画方法等。基于几何的可视化方式中最经典的就是“平行坐标系”方法。平行坐标系(parallel coordinates)使用平行的竖直轴线来代表维度,通过在轴上刻划多维数据的数值并用折线相连某一数据项在所有轴上的坐标点展示多维数据。平行坐标系方法能够简洁、快速地展示多维数据,发展出很多改进技术。但是当数据集的规模变得非常大时,密集的折线会引起“视觉混淆”(visual clutter),处理方法包括维度重排、交互方法、聚类、过滤、动画等。其他基于几何的方法包括Radviz方法使用圆形坐标系展示可视化结果;散点图矩阵(scatter plot matrix)将多维数据中的各个维度两两组合绘制成一系列的按规律排列的散点图。基于图标的可视化方法用具备可视特征的几何形状如大小、长度、形状、颜色等刻画数据,代表性的方法包括星绘法和Chernoff 面法等。动画方法用于可视化中可被用来提高交互性和理解程度,其缺点包括可能分散注意力、引起用户的误解、产生“图表垃圾”等。
时间序列数据是指具有时间属性的数据集,针对时间序列数据的可视化方法如下:线形图、堆积图、动画、地平线图、时间线。
层次数据具有等级或层级关系。层次数据的可视化方法主要包括节点链接图和树图2种方式。其中树图(treemap)由一系列的嵌套环、块来展示层次数据。为了能展示更多的节点内容,一些基于“焦点+上下文”技术的交互方法被开发出来。包括“鱼眼”技术、几何变形、语义缩放、远离焦点的节点聚类技术等。
网络数据具有网状结构。自动布局算法是网络数据可视化的核心,目前主要有以下3类:一是力导向布局(forcedirected layout);二是分层布局(hierarchical layout);三是网格布局(grid layout)。当数据节点的连接很多时,容易产生边交叉现象,导致视觉混淆。解决边交叉现象的集束边(edge bundle)技术可以分为以下几类:力导向的集束边技术、层次集束边技术、基于几何的边聚类技术、多层凝聚集束边技术和基于网格的方法等。
其他研究热点包括图形的视觉因素研究、自适应可视化研究、可视化效果的评估等。
视觉因素对于可视化效果的影响,如位置、长度、面积、形状、色彩等影响已经引起很多研究者的注意。色彩是视觉因素的重要组成部分,研究主要集中在颜色选择的原则和交互系统中。这些原则基于数据类型、类的数量、认知约束等。
自适应可视化可以提高信息可视化的适应性。根据Domik & Gutkauf和Grawemeyer & Cox的研究成果为以下几类:自适应可视化展示、自适应资源模型、自适应用户模型。自适应可视化展示是指根据用户的特征自动为用户提供多种展示类型,自动选择可视化内容及布局的形式,自动调整可视化的元素等。自适应资源模型反映了对硬件和软件的利用以提高可视化性能。自适应用户模型通过显示用户模型的内容并让用户能够编辑,从而让用户能够控制模型的内容。
Morse等指出当前关于信息可视化评价的研究较少,少量研究也没有提出直接和通用的可视化的评估方式,需要对信息可视化评价的理论基础、方法和应用做深入的研究。
可视化技术与应用还应该继续向以下4个方面努力:直观化、关联化、艺术化、交互化。戴国忠等认为信息可视化技术的发展方向是协同(Collaboration)、分析过程(Analytics)、计算(Computational)和意会(Sense-making)。未来研究方向可以包括以下几个内容。
信息可视化和数据挖掘的紧密结合。为提高处理海量数据时的速度和效率和解决视觉混淆现象;必须运用数据挖掘的公式和算法,对数据分析的过程及结果进行可视化展现。
协同可视化。协同可视化领域的研究方向可以包括可视化接口设计、基于Web的可视化协同平台开发、协同可视化工作的视图设计、协同可视化中的工作流管理及协同可视化技术的应用等。
更多领域的应用技术开发。包括统计可视化:需要研究使用几何、动画、图像等工具对数据统计的过程和结果进行加工和处理的技术;新闻可视化:对新闻内容进行抓取、清洗和提取和可视化展示;社交网络可视化:可视化方式显示社交网络的数据,对社交网络中节点、关系及时空数据的集成展示。搜索日志可视化:针对在使用搜索引擎时产生的海量搜索日志,可视化的展现用户的搜索行为、关系和模式等。
关键词:信息可视化;可视化技术;人机交互;数据挖掘
中图分类号:TP391文献标志码:A
可视化技术起源于20世纪80年代出现的科学计算可视化[1]。“信息可视化”一词最早出现在Robertson,Card和Mackinlay在1989 年发表的文章《用于交互性用户界面的认知协处理器》中[2]。信息可视化是可视化技术在非空间数据领域的应用,是将数据信息转化为视觉形式的过程,可以增强数据呈现效果,让用户以直观交互的方式实现对数据的观察和浏览,从而发现数据中隐藏的特征、关系和模式。信息可视化的图表形式最早出现于18世纪,历史和政治学家W.Playfair和数学家J.H.Lambert首次创建了可视化图表,他们认为将复杂的数据转化为图表可以帮助我们了解数据。19世纪的法国科学家J.Minard和E.J.Marey首次采用非纯手工方式绘制了图表[3]。进入20世纪,现在计算机技术的进步拓展了数据处理的能力并且可以提供多种交互方式,使得用户可以更便利的观察自己感兴趣的数据,可视化应用也更加广泛,主要领域涉及:数据挖掘可视化、网络数据可视化、社交可视化、交通可视化、文本可视化、生物医药可视化等等。 [5]陈建军,于志强,朱昀. 数据可视化技术及其应用[J]. 红外与激光工程, 2001,30(5): 339342.
CHEN Jianjun, YU Zhijiang, ZHU Yun. Data visualization and its applications [J]. Infrared and Laser Engineering, 2001, 30(5): 339342.
[6]任磊,王维信, 周明骏,等.一种模型驱动的交互式信息可视化开发方法[J].软件学报,2008, 19(8):1 9471 964.
REN Lei, WANG Weixin, ZHOU Mingjun, et al. A model driven development method for interactive information visualization[J]. Journal of Software, 2008, 19(8): 1 9471 964.
[7]刘大海.海量数据可视化方法的研究[D].天津:天津大学,2009.
LIU Dahai. The Research of Largescale Data Visualization[D]. Tianjin: Tianjin:Tianjin University, 2009.
[8]SHNEIDERMAN B. The eyes have it: a task by data type taxonomy for information visualizations[C]//Visual Languages, 1996. Proceedings. IEEE Symposium on, 1996: 336343.
[9]INSELBERG A. NDimensional coordinates [J]. Proceedings of the Workshop on Picture Data Description & Management,1980 ( August).
[10]孙扬,封孝生,唐九阳,等.多维可视化技术综述[J].计算机科学,2008, 35(11):17, 59.
SUN Yang, FENG Xiaosheng, TANG Jiuyang, et al. Survey on the research of multidimensional and multivariate data visualization [J]. Computer Science, 2008, 35(11): 17, 59.
[11]INSELBERG A, DIMSDALE B. Parallel coordinates: a tool for visualizing multidimensional geometry[C]//Visualization, 1990. Visualization '90., Proceedings of the First IEEE Conference on, 1990: 361378.
[12]杨峰,李月华.高维信息可视化方法研究综述[J].情报理论与实践,2012, 35(9):125128.
YANG Feng, LI Yuehua. Review of multidimensional information visualization [J]. Information Studies: Theory & Application, 2012, 35(9): 125128.
[13]YINGHUEY F, WARD M O, RUNDENSTEINER E A. Hierarchical parallel coordinates for exploration of large datasets[C]//Visualization '99. Proceedings, 1999: 43508.
[14]GRAHAM M, KENNEDY J. Using curves to enhance parallel coordinate visualizations[C]//Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on, 2003: 1016.
[15]盛秀杰,金之钧,王义刚.一种新的面向多元统计分析的信息可视化技术[J].石油地球物理勘探,2013, 48(3):488496, 506, 332.
SHENG Xiujie, JIN Zhijun, WANG Yigang. A novel information visualization approach for multiple statistical analysis[J]. Oil Geophysical Prospecting, 2013, 48(3): 488496, 506, 332.
[16]SIIRTOLA H. Direct manipulation of parallel coordinates[C]//Information Visualization, 2000. Proceedings. IEEE International Conference on, 2000: 373378.
[17]PAK C W, BERGERON R D. Multiresolution multidimensional wavelet brushing[C]//Visualization '96. Proceedings. 1996: 141148. [18]H HAUSER F L, DOLEISCH H. Angular brushing of extended parallel coordinates[C]//In Proceedings of the IEEE InfoVis'02, 2002: 127130.
[19]N WONG S C, GREENBERG S. Edge lens: an interactive method for managing edge congestion in graphs[C]//In Proceedings of the IEEE InfoVis'03, 2003: 5158.
[20]ZHOU Hong, YUAN Xiaoru, QU Huamin, et al. Visual clustering in parallel coordinates [J]. Computer Graphics Forum, 2008, 27(3): 1 0471 054.
[21]BERTINI E, DELL L. Aquila,and G.santucci.SpringView:cooperation of radviz and parallel coordinates for view optimization and clutter reduction [C]//In Proceedings of CMV’05, Jul. 2005: 2229.
[22]YANG J, PENG W, WARD M O, et al. Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets[C]//INFOVIS 2002: IEEE Symposium on Information Visualization 2003, PROCEEDINGS, 2003: 105112.
[23]JOHANSSON J, LJUNG P, JERN M, et al. Revealing structure within clustered parallel coordinates displays[C]//Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on, 2005: 125132.
[24]JOHANSSON J, COOPER M. A screen space quality method for data abstraction[J]. Computer Graphics Forum, 2008, 27(3): 10391046.
[25]SHEARER J, OGAWA M, KWANLIU M, et al. Pixelplexing: gaining display resolution through time[C]//Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific, 2008: 159166.
[26]KANDOGAN E. Visualizing multidimensional clusters, trends, and outliers using Star Coordinates[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco, CA, United states, 2001: 107116.
[27]CRAIG P, KENNEDY J. Coordinated graph and scatterplot views for the visual exploration of microarray timeseries data[C]//Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on, 2003: 173180.
[28]SCHMID C, HINTERBERGER H. Comparative multivariate visualization across conceptually different graphic displays[C]// In Proceedings of SSDBM’ 94, 1994: 4251.
[29]ANDREWS D F. Plots of high dimensional data[J]. International Journal of Biometrics, 1972, 28(1): 125136.
[30]CHERNOFF H. The use of faces to represent points in kdimensional space graphically[J]. Journal of the American Statistical Association, 1973(68): 361368.
[31]LEE M D, BUTAVICIUS M A, REILLY R E. Visualizations of binary data: A comparative evaluation[J]. International Journal of Humancomputer Studies, 2003, 59(5): 569602. [32]ROBERTSON G, CARD S K, MACKINLAY J D. Cone trees:animated 3D visualizations of hierarchical information[C]// In Proc. ACM CHI 1991[C], New Orleans, LA, Apr 1991:189194.
[33]HEER J, ROBERTSON G G. Animated transitions in statistical data graphics[C]// IEEE transaction on visualization and computer graphics, November/December 2007,13(6): 12401247.
[34]ROBERTSON G, CAMERON K, CZERWINSKI M, et al. Animated visualization of multiple intersecting hierarchies[J]. Journal of Information Visualization, 2002, 1(1): 5065.
[35]PLAISANT C, GROSJEAN J, BEDERSON B B.. SpaceTree: Supporting Exploration in a Large NodeLink Tree, Design Evolution and Empirical Evaluation [C]// In Proc. IEEE InfoVis 2002, Oct. 2002:5764.
[36]HEER J, CARD S K. DOITrees Revisited: Scalable, SpaceConstrained Visualization of Hierarchical Data[C]// In Proc. Advanced Visual Interfaces, 2004: 421424.
[37]WATTENBERG M, KRISS J. Designing for social data analysis[C]// IEEE Trans. on Visualization and Computer Graphics, 2006, 12(4):549557.
[38]GAPMINDER[ED/OL]. http://www.gapminder.org .
[39]TUFTE E. The Visual Display of Quantitative Information[M]. [S.l.]: Graphics Press, 1983.
[40]SAITO T, MIYAMURA H N. TwoTone PseudoColoring:compact visualization for OneDimensional data[J]. Proc.IEEE InfoVis,Oct, 2005: 173180.
[41]JEFFREY HEER N K, AGRAWALA M. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations [J]. ACM Human Factors in Computing Systems (CHI), 2009: 1 3031 312.
[42]KIM N W, STUART K C, JEFFREY H .Tracing Genealogical Data with TimeNets[C]// In proceeding of: Proceedings of the International Conference on Advanced Visual Interfaces, AVI 2010, 2010:2628.
[43]SPENCE R, APPERLEY M D. Database navigation:An office environment for the professional[J]. Behavior and Information Technology, 1982(1): 4354.
[44]MACKINLAY J D R G, CARD S K. The perspective wall: detail and context smoothly integrated[C]// In Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology, 1991:173176.
[45]JENSEN M. Visualizing Complex Semantic Timelines[Z]. NewsBlip Technical Report NBTR2003001, http://newsblip.com
[46]ROBERTSON U, MACKINLAY J D, CARD S K. Cone trees: animated 3D visualizations of hierarchical information [Z], 1991: 189194.
[47]张昕,袁晓如.树图可视化[J].计算机辅助设计与图形学学报,2012, 24(9):1 1131 124. ZHANG Xin, YUAN Xiaoru. Treemap visualization [J]. Journal of Computeraided Design & Computer Graphics, 2012, 24(9): 1 1131 124.
[48]CARD S K, PALO A R, CENTER CA,et al.Time tree:Exploring time changing hierarchies[C]//IEEE Symposium On Visual Analytics Science And Technology, 2006: 310.
[49]SELASSIE D, HELLER B, HEER J. Divided edge bundling for directional network data[C]//IEEE Trans Vis Comput Graph,2011,17(12):2 3542 363.
[50]BERTIN J. Sémiologie graphique,GauthierVillars:Paris,1967.English translation by W.J.Berg as semiology of graphics[Z], 1983.
[51]CLEVELAND W S, MCGILL R. Graphical perception:theory,experimentation,and application to the development of graphical methods[J]. Journal of the American Statistical Association, 1984, 79(387): 531554.
[52]SIMKIN D, HASTIE R. An informationprocessing analysis of graph perception[J]. Journal of the American Statistical Association, 1987, 82(398): 454465.
[53]TALBOT J, LIN S, HANRAHAN P. An extension of Wilkinson's algorithm for positioning tick labels on axes[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1 0361 043.
[54]L L B. TREINISH L A.A rulebased tool for assisting colormap selection[J]. Proc.IEEE Visualization, 1995: 118125.
[55]HARROWER M, BREWER C. Colorbrewer.org: An online tool for selecting color schemes for maps[J]. The Cartographic Journal, 2003, 40(1): 2737.
[56]MEIER B J, SPALTER A M, KARELITZ D B. Interactive color palette tools[J]. Computer Graphics and Applications,IEEE, 2004, 24(3): 6472.
[57]D COHENOR O S, XU Yq. Color harmonization[Z]. In ACM SIGGRAPH, 2006:624630.
[58]HEER J, STONE M. Color naming models for color selection, image editing and palette design[C]//30th ACM Conference on Human Factors in Computing Systems, CHI 2012, 2012: 1 0071 016.
[59]WANG L J, GIESEN J, MCDONNELL K T, et al. Color design for illustrative visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1 7391 746.
[60]CHUANG J, WEISKOPF D, MOELLER T. Energy aware color Sets[J]. Computer Graphics Forum, 2009, 28(2): 203211.
[61]B PREIM P R, THEISEL H. Selecting SemanticallyResonant colors for data visualization[J]. Computer Graphics Forum (Proc. EuroVis), 2013.
[62]ROUSSINOV D, RAMSEY M. Information forage through adaptive visualization[C]//Proceedings of the 1998 3rd ACM Conference on Digital Libraries, 1998: 303304.
[63]DOMIK G O, GUTKAUF B. User modeling for adaptive visualization systems[C]//Proceedings of the 1994 IEEE Visualization Conference, 1994: 217223. [64]GRAWEMEYER B, COX. A bayesian approach to modelling users'information display preferences[Z], 2005: 225230.
[65]TERAOKA T, MARUYAMA. Adaptive information visualization based on the user's multiple viewpointsinteractive 3d visualization of the www.In Proceedings of the 1997 IEEE symposium on information visualization(InfoVis'97)[Z], 1997: 2528.
[66]BITTON E. A spatial model for collaborative filtering of comments in an online discussion forum[C]//3rd ACM Conference on Recommender Systems, RecSys'09, 2009: 393396.
[67]GANSNER E, HU Y, KOBOUROV S, et al. Putting recommendations on the map Visualizing clusters and relations[C]//3rd ACM Conference on Recommender Systems, RecSys'09, 2009: 345348.
[68]BRUSILOVSKY P, RIZZO. Using maps and landmarks for navigation between closed and open corpus hyperspace in Webbased education[Z], 2002: 5982.
[69]MEYER J, GELDER S, KRETSCHMER K, et al. Interactive visualization of hybrid medical data sets[C]//WSCG `97: The Fifth International Conference in Central Europe on Computer Graphics and Visualization `97, Conference Proceedings, 1997, 14: 371380.
[70]GALLOP J R, BLAIR G S, COOPER C S, et al. Investigating a componentoriented approach to adaptive collaborative visualization[C]//Visualization and Data Analysis 2002, 2002: 99104.
[71]LIU H H, JI Q G. Research on adaptive rendering based on visual acuity equations[C]//Fourth International Conference on Virtual Reality and its Applications in Industry, 2004: 9699.
[72]BRUSILOVSKY P. Methods and techniques of adaptive hypermedia[J]. User Modeling and Useradapted Interaction, 1996, 6(2/3): 87129.
[73]WOJCIECH W, KRZYSZTOF W, WOJCIECH C. Adaptive 3D interfaces for search result visualization[C]//Proc.of IADIS International Conference eSociety 2003, 2003: 365372.
[74]AHN J W, BRUSILOVSKY P, GRADY J, et al. Open user profiles for adaptive news systems: Help or harm[C]//16th International World Wide Web Conference, WWW2007.AB,Canada, 2007: 1120.
[75]BAKALOV F, K?NIGRIES B, NAUERZ A, et al. IntrospectiveViews: an interface for scrutinizing semantic user models[C]//18th International Conference on User Modeling, Adaptation and Personalization, UMAP 2010, 2010: 219230.
[76]KUMP B, SEIFERT. MyExperiences:visualizing evidence in an open learner model[C]//In Adjunct proceedings of the 18th international conference on user modeling, 2010: 1618.
[77]AHN J W, BRUSILOVSKY P. Adaptive visualization for exploratory information retrieval[J]. Information Processing&Management, 2013, 49(5): 1 1391 164. [78]MORSE E, LEWIS M, OLSEN K A. Evaluating visualizations: Using a taxonomic guide[J]. International Journal of Humancomputer Studies, 2000, 53(5): 637662.
[79]MEYER J. Performance with tables and graphs: effects of training and a Visual Search Model[J]. Ergonomics, 2000, 43(11): 1 8401 865.
[80]FREITAS. Evaluating usability of information visualization techniques[C]//5th Symposium on Human Factors in Computer Systems, 2002: 4051.
[81]PURCHASE C H. Effects of graph layout[C]//Proceedings of OZCHI 98.Adelaide,Australia, 1998: 8086.
[82]Dowell, J, Long, et al. Conception of the cognitive engineering design problem[J]. Ergonomics, 1998, 41(2): 126140.
[83]杨峰,李蔚.评价信息可视化技术的指标研究[J].图书情报知识,2007(4):8084.
YANG Feng, LI Wei. The research of indexes for evaluating information visualization techniques[J]. Document,Information & Knowledge, 2007(4): 8084.
[84]MICHAEL D L, MARCUS A B, RACHEL E R. Ten guidelines for effective data visualization in scientific publications. Int. J. HumanComputer Studies, 2003,59:569602.
[85]戴国忠,陈为,洪文学,等.信息可视化和可视分析:挑战与机遇——北戴河信息可视化战略研讨会总结报告[J].中国科学:信息科学,2013, 43(1):178184.
DAI Guozhong, CHEN Wei, HONG Wenxue, et al. Information visualization and visual analytics:challenges and opportunities[J]. China Science, 2013, 43(1): 178184.
[86]任永功,于戈.数据可视化技术的研究与进展[J].计算机科学,2004, 31(12):9296.
REN Yonggong, YU Ge. Research and development of the data visualization techniques[J]. Computer Science, 2004, 31(12): 9296.