【摘 要】
:
刀具磨损的智能监测是影响现代机械加工业智能化发展进程的重要因素。在机械加工过程中,大多数机床通过使用传感器采集信号,从而建立刀具磨损与传感器信号之间的关系,在不中
【基金项目】
:
上海市自然科学基金(20ZR1460500)。
论文部分内容阅读
刀具磨损的智能监测是影响现代机械加工业智能化发展进程的重要因素。在机械加工过程中,大多数机床通过使用传感器采集信号,从而建立刀具磨损与传感器信号之间的关系,在不中断加工过程的情况下中实现刀具的磨损预测,根据是否达到磨损阈值来判断是否自动换刀或报警以实现在线智能监控。能否从传感器信号中提取有效的特征信息,并且建立一个快速响应且精确的预测模型是一个亟待解决的问题。因此,针对上述问题,提出了一种基于深度信号处理和堆叠残差GRU的刀具磨损预测模型。在信号处理方面设计了BiGRU-Self Attention(BG
其他文献
高维数据集的处理是计算机视觉领域的核心,子空间聚类是实现高维数据聚类使用最广泛的方法之一。传统的子空间聚类假定数据来自不同的线性子空间,且不同子空间的区域不重叠。然而,现实中的数据往往不满足这两个约束条件,使得子空间聚类的效果受到影响。为了解决这两个问题,引入核化子空间来解决子空间数据的非线性问题,引入子空间系数矩阵的二阶近邻来处理重叠的子空间问题。随后,设计了基于二阶近邻的核化子空间三步聚类算法
近年来,基于生成对抗网络(Generative Adversarial Network, GAN)从文本描述中合成图像这一具有挑战性的任务已经取得了令人鼓舞的结果。这些方法虽然可以生成具有一般形状和颜色的图像,但通常也会生成具有不自然的局部细节且扭曲的全局图像。这是因为卷积神经网络在捕获用于像素级别图像合成的高级语义信息时效率低下,以及处于粗略状态的生成器-鉴别器由于缺少详细信息生成了有缺陷的结果
传统的深度强化学习方法依赖大量的经验样本并且难以适应新任务。元强化学习通过从以往的训练任务中提取先验知识,为智能体快速适应新任务提供了一种有效的方法。基于最大熵
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息。子
现有的边缘检测方法在含噪图像中的检测性能不佳。针对含噪图像的边缘检测问题,提出了利用引导核改进基于非线性结构张量的含噪图像边缘检测方法。首先,计算含噪图像的张量积。然后,根据图像梯度对张量积进行扩散,图像梯度依赖张量积本身。扩散方程中的扩散矩阵包含张量积,该张量积是通过各向异性的引导核进行空间自适应平均,而不是通过各向同性的高斯核进行平均。最后计算扩散张量积的特征值和特征向量,并基于此检测图像的边
受制于核心技术和知识产权等客观条件,国产自主芯片的研发困难重重。RISC-V作为一个开源指令集架构(ISA),具有简洁、模块化等优点,成为了国产处理器的新选择。基础数学库作为
随着信息技术的高度发展,数据成为了重要的战略资源,如何利用大数据进行查询是众多学者的研究内容。与此同时,被查询对象在未被选择时,如何利用大数据使自己能够满足用户的查
虽然现有基于深度学习的图像阴影消除方法已取得了一定的进步,但是这些方法主要关注图像本身,没有很好地探索其他额外与阴影相关的信息,因此这些方法常常存在图像纹理模糊、内容不协调等问题。针对这些问题,文中基于生成对抗网络(Generative Adversarial Network, GAN),提出了一种新的阴影消除网络模型。该方法首先从全局上生成一个粗糙的阴影消除结果,再利用与阴影相关的残差信息对粗糙
问题生成是指机器主动对一段文本进行提问,生成一个自然语言的问题。神经问题生成则是完全采用端到端的训练方式,使用神经网络完成文档和答案到问题的转换,是自然语言处理中
近年来,随着数据挖掘和机器学习的兴起,基于时间序列分析方法的研究愈加丰富。作为机器学习的经典方法,KNN(K-Nearest Neighbor)因其简单、准确度高等特性被广泛应用于时间序