论文部分内容阅读
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实