论文部分内容阅读
针对标准误差反向传播(backpropagation,BP)神经网络算法易陷入局部最优、收敛速度缓慢等问题,提出一种基于改进粒子群算法的模糊神经的变压器油色谱故障诊断方法。该方法首先通过模糊编码边界对网络输入模糊化;再结合非线性策略的惯性权重及学习因子改进的粒子群BP网络算法来诊断变压器故障类型,既能平衡全局搜索和局部搜索能力,还可以避免BP神经网络陷入局部最优;最后,采用MATLAB软件对变压器油色谱数据进行仿真,结果表明该方法具有收敛速度快、诊断准确率高、泛化能力强等优点。