论文部分内容阅读
Aim: To study the integration of hepatitis B virus (HBV) DNA into sperm chromosomes in hepatitis B patients and the features of its integration. Methods: Sperm chromosomes of 14 subjects (5 healthy controls and 9 HB patients, including 1 acute hepatitis B, 2 chronic active hepatitis B, 4 chronic persistent hepatitis B, 2 HBsAg chronic carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes. Results: Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis B. In 9(9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots and the others 2 to 4 signals. The fluorescence intensity showed significant diffe
Aim: To study the integration of hepatitis B virus (HBV) DNA into sperm chromosomes in hepatitis B patients and the features of its integration. Methods: Sperm chromosomes of 14 subjects (5 healthy controls and 9 HB patients, including 1 acute hepatitis B, 2 chronic active hepatitis B, 4 chronic persistent hepatitis B, 2 HBsAg chronic carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probes to detect the specific HBV DNA sequences in the sperm chromosomes. Results: Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis B. In 9 (9 / 42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots and the others 2 to 4 signals. The fluorescence intensity showed significant diffe