论文部分内容阅读
多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为"人工神经网络"。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。
人工神经网络是由大量的简单基本元件-神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络的基本结构模仿人脑,反映了人脑功能的若干基本特性,能够自身适应环境、总结规律、完成某种运算、识别或过程控制。人工神经网络具有并行处理特征,可以大大提高工作速度。
人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。
第二,具有联想存储功能。
第三,具有高速寻找优化解的能力。
1 神经网络的学习方法
神经网络的学习也称为训练,指的是神经网络在外界环境的刺激作用下调整网络自由参数,并以新的方式来响应外部环境的过程。能够从环境中学习并在学习中提高自身性能是神经网络最有意义的性质。理想情况下,神经网络在每一次重复学习后,对它的环境有了更多的了解。
(1) 监督学习(有教师学习)
在学习时需要由教师提供期望输出,通常神经网络对于周围的环境未知而教师具有周围环境的知识,输入学习样本,教师可以根据自身的知识为训练样本提供最佳逼近结果,神经网络的自由参数在误差信号的影响下进行调整,其最终目的是让神经网络模拟教师。
(2) 非监督学习(无教师学习)
它也称为自组织学习,系统在学习过程中,没有外部教师信号,而是提供给一个关于网络学习性质的度量,它独立于学习任务,以此尺度来逐步优化网络,一旦网络与输入数据的统计规律达成一致,那么它将发展形成用于输入数据编码特征的内部表示能力,从而自动创造新的类别。
(3)强化学习(激励学习)
在强化学习系统中,对输入输出映射的学习是通过与外部环境的不断交互作用来完成学习,目的是网络标量函数值最小,即外部环境对系统输出结果只给出评价信息(奖或罚)而不是给出正确答案,学习通过强化那些受奖的动作来改善自身性能。
神经网络针对学习问题修改网络自由参数的过程称为学习规则(学习算法),设计学习规则的目的是训练网络来完成某些任务,没有一个独特的学习规则可以完成所有的学习任务。神经网络有5个基本的学习规则:误差--修正学习,基于记忆的学习,Hebb学习,竞争学习,随机学习。
2 神经网络的研究趋势
(1) 利用神经生理与认知科学研究大脑思维模式及智能机理过程
深入研究神经网络理论神经网络在一定程度上揭示人类智能和了解人脑的工作方式,由于人类对神经系统的了解非常有限,而且对其自身脑结构及其活动机理的认识不完善,故而神经网络只能是模仿人脑的局部功能,而对人脑作为一个整体的功能解释,神经网络起不到任何作用。神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论,因此利用神经生理和认知科学研究大脑思维及智能机理,如有新的突破将会改变智能和机器关系的认识。
(2) 神经网络领域的数学研究趋于重要
随着神经科学基础理论研究的深入,用数理方程探索智能水平更高网络模型将是研究的趋势所在,神经元以电为主的生物过程在认识上一般采用非线性动力学模型,其动力演变过程往往是非常复杂的,神经网络这种强的生物学特征和数学性质,要求有更好的数学手段,而对于神经网络这样非线性模型,需要用数学方法研究网络新的算法和网络性能,如稳定性、收敛、容错性、鲁棒性等,开发新的网络数理理论,如神经动力学、非线性神经场等。研究人员断言一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域主要目标之一。
(3) 神经网络软件模拟、硬件实现的研究以及神经网络在各个科学技术领域应用的研究
目前,数字计算机在计算方面的能力已远远超出入的大脑,但在自然语言理解、图像辨识、信息处理等方面都显得笨拙,原因是基于冯·偌依曼思想的计算机结构及其运算方式与人的大脑有本质的区别,而神经计算机(第六代计算机)以神经网络为理论基础,用于模拟神经网络,具有自学习、自组织和自适应能力,能更有效地处理复杂问题,其实现过程用光学、生物芯片的方式,现在光学神经计算机和分子计算机的研究是神经网络的前沿课题。
(4) 神经网络和其它算法结合的研究
神经网络和其它算法的结合和交叉,研究新型神经网络模型也是发展方向之一。如神经网络和模糊逻辑结合,建立模糊神经网络;将混沌理论和神经网络结合建立混沌神经网络;将遗传算法和神经网络结合;利用遗传算法优化神经网络的结构或权值;将小波分析和神经网络结合建立小波神经网络;专家系统,贝叶斯学习以及粗糙集理论和神经网络结合等,这些都是神经网络研究的热点。
3 结束语
神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。比如:神经计算的基础理论框架以及生理层面的研究仍需深入;新的模型和结构的研究;神经网络的可理解性问题;神经网络技术与其他技术更好的结合等。
今后的研究应在充分利用神经网络优点的基础上,关注各个领域的新方法、新技术,发现它们之间的结合点,取长补短,并进行有效的融合,从而获得比单一方法更好的效果。除此之外,还应当加强神经网络基础理论方面的研究和在实际应用方面的研究,使其在工程应用中进一步发挥越来越大的作用,应用领域越来越广,应用水平越来越高!
作者简介:李娜,1981年6月,女,河北省新乐市人,石家庄信息工程职业学院电子商务系,助教,大学本科, 主要研究方向为电子商务及计算机与科学技术方向;张宏彬,1981年8月,女,河北省赵县市人,石家庄信息工程职业学院高职教育研究所,助教,研究生, 主要研究方向为经济管理及马克思主义思想政治方向。
人工神经网络是由大量的简单基本元件-神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络的基本结构模仿人脑,反映了人脑功能的若干基本特性,能够自身适应环境、总结规律、完成某种运算、识别或过程控制。人工神经网络具有并行处理特征,可以大大提高工作速度。
人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。
第二,具有联想存储功能。
第三,具有高速寻找优化解的能力。
1 神经网络的学习方法
神经网络的学习也称为训练,指的是神经网络在外界环境的刺激作用下调整网络自由参数,并以新的方式来响应外部环境的过程。能够从环境中学习并在学习中提高自身性能是神经网络最有意义的性质。理想情况下,神经网络在每一次重复学习后,对它的环境有了更多的了解。
(1) 监督学习(有教师学习)
在学习时需要由教师提供期望输出,通常神经网络对于周围的环境未知而教师具有周围环境的知识,输入学习样本,教师可以根据自身的知识为训练样本提供最佳逼近结果,神经网络的自由参数在误差信号的影响下进行调整,其最终目的是让神经网络模拟教师。
(2) 非监督学习(无教师学习)
它也称为自组织学习,系统在学习过程中,没有外部教师信号,而是提供给一个关于网络学习性质的度量,它独立于学习任务,以此尺度来逐步优化网络,一旦网络与输入数据的统计规律达成一致,那么它将发展形成用于输入数据编码特征的内部表示能力,从而自动创造新的类别。
(3)强化学习(激励学习)
在强化学习系统中,对输入输出映射的学习是通过与外部环境的不断交互作用来完成学习,目的是网络标量函数值最小,即外部环境对系统输出结果只给出评价信息(奖或罚)而不是给出正确答案,学习通过强化那些受奖的动作来改善自身性能。
神经网络针对学习问题修改网络自由参数的过程称为学习规则(学习算法),设计学习规则的目的是训练网络来完成某些任务,没有一个独特的学习规则可以完成所有的学习任务。神经网络有5个基本的学习规则:误差--修正学习,基于记忆的学习,Hebb学习,竞争学习,随机学习。
2 神经网络的研究趋势
(1) 利用神经生理与认知科学研究大脑思维模式及智能机理过程
深入研究神经网络理论神经网络在一定程度上揭示人类智能和了解人脑的工作方式,由于人类对神经系统的了解非常有限,而且对其自身脑结构及其活动机理的认识不完善,故而神经网络只能是模仿人脑的局部功能,而对人脑作为一个整体的功能解释,神经网络起不到任何作用。神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论,因此利用神经生理和认知科学研究大脑思维及智能机理,如有新的突破将会改变智能和机器关系的认识。
(2) 神经网络领域的数学研究趋于重要
随着神经科学基础理论研究的深入,用数理方程探索智能水平更高网络模型将是研究的趋势所在,神经元以电为主的生物过程在认识上一般采用非线性动力学模型,其动力演变过程往往是非常复杂的,神经网络这种强的生物学特征和数学性质,要求有更好的数学手段,而对于神经网络这样非线性模型,需要用数学方法研究网络新的算法和网络性能,如稳定性、收敛、容错性、鲁棒性等,开发新的网络数理理论,如神经动力学、非线性神经场等。研究人员断言一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域主要目标之一。
(3) 神经网络软件模拟、硬件实现的研究以及神经网络在各个科学技术领域应用的研究
目前,数字计算机在计算方面的能力已远远超出入的大脑,但在自然语言理解、图像辨识、信息处理等方面都显得笨拙,原因是基于冯·偌依曼思想的计算机结构及其运算方式与人的大脑有本质的区别,而神经计算机(第六代计算机)以神经网络为理论基础,用于模拟神经网络,具有自学习、自组织和自适应能力,能更有效地处理复杂问题,其实现过程用光学、生物芯片的方式,现在光学神经计算机和分子计算机的研究是神经网络的前沿课题。
(4) 神经网络和其它算法结合的研究
神经网络和其它算法的结合和交叉,研究新型神经网络模型也是发展方向之一。如神经网络和模糊逻辑结合,建立模糊神经网络;将混沌理论和神经网络结合建立混沌神经网络;将遗传算法和神经网络结合;利用遗传算法优化神经网络的结构或权值;将小波分析和神经网络结合建立小波神经网络;专家系统,贝叶斯学习以及粗糙集理论和神经网络结合等,这些都是神经网络研究的热点。
3 结束语
神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。比如:神经计算的基础理论框架以及生理层面的研究仍需深入;新的模型和结构的研究;神经网络的可理解性问题;神经网络技术与其他技术更好的结合等。
今后的研究应在充分利用神经网络优点的基础上,关注各个领域的新方法、新技术,发现它们之间的结合点,取长补短,并进行有效的融合,从而获得比单一方法更好的效果。除此之外,还应当加强神经网络基础理论方面的研究和在实际应用方面的研究,使其在工程应用中进一步发挥越来越大的作用,应用领域越来越广,应用水平越来越高!
作者简介:李娜,1981年6月,女,河北省新乐市人,石家庄信息工程职业学院电子商务系,助教,大学本科, 主要研究方向为电子商务及计算机与科学技术方向;张宏彬,1981年8月,女,河北省赵县市人,石家庄信息工程职业学院高职教育研究所,助教,研究生, 主要研究方向为经济管理及马克思主义思想政治方向。