论文部分内容阅读
为提高变压器故障诊断准确率,提出了一种基于遗传算法的动态加权模糊C均值聚类算法。该算法使用把聚类中心作为染色体的浮点数的编码方式,染色体长度可变,不同的长度对应于不同的故障聚类数;并使用权值区别不同样本点对故障划分的影响程度。将该算法应用于电力变压器油中溶解气体分析(DGA)数据分析,实现了变压器的故障诊断。经过大量实例分析,并将结果与其他算法进行对比,表明该算法具有较高的诊断精度。