论文部分内容阅读
针对现有直接优化NDCG的排序算法或基于虚梯度或基于结构化学习,其得到的模型均不够精确,提出一种新的排序算法.算法以多类SVM为框架,在此基础上设计了一个面向NDCG的目标函数.考虑到该函数的非光滑性,提出使用割平面算法进行求解,同时注意到已有割平面算法可能存在的“主问题”非单调递减,会降低算法的收敛速度,进而设计了一种高效的线性搜索算法对割平面的选择进行改进,确保了“主问题”的单调递减.基准数据集上的实验证明了所提算法的有效性.