论文部分内容阅读
结合最速下降法计算量小和共轭方向法收敛速度快的特点,提出了一种求解病态方程组的共轭向量基的方法。线性方程组的精确解能够由共轭向量基线性表示,利用迭代的方式给出了构造共轭向量基以及对应系数的方法,证明了算法所构造的向量基的共轭性。同时给出了一个改进算法以适合不同精度要求,加快迭代的收敛速度。通过对5000阶的Hilbert方程组进行求解,结果的相对误差小于0.45%,并与当前普遍使用有效的方法进行了比较,数值实验结果表明,该算法适合求解大型病态线性方程组,且具有快速收敛,精度较高的特性。