论文部分内容阅读
以Xie-Beni指标作为聚类有效性函数取得了良好的效果,但当聚类个数很大时,Xie-Beni指标将单调递减。针对此问题,分别考察改进的Hubertr统计量和聚类分离度,导出一个新的基于数据几何结构的聚类有效性函数。使得它有惟一的最大值,函数值随聚类个数增大而递减的趋势并不影响最优聚类个数的判定。实验表明,该有效性函数能够发现最优的聚类个数,对于分类结构比较明确的数据,有良好的性能,而且对模糊因子m有良好的鲁棒性。