金属有机框架衍生的Co3O4电极材料及其电化学性能

来源 :储能科学与技术 | 被引量 : 0次 | 上传用户:kkai365
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超级电容器作为一种绿色储能器件,因其具有较大的功率密度、价格低廉、绿色环保等特征而备受关注.电极材料、电解液和隔膜都会影响超级电容器的电化学性能,其中电极材料是关键因素.因此,如何制备高性能的电极材料是人们研究的重要课题之一.本工作通过方便的水热合成方法制备了金属有机框架结构衍生的Co3O4纳米叶结构.所制备的产物呈现多孔蓬松结构.通过优化溶液浓度和反应时间,研究了Co3O4样品的生长机理.三电极电化学性能测试表明:反应时间为4 h时,样品的电化学性能最好.在电流密度为0.5 A/g时,其容量可达到156 F/g.经过6000圈循环后,其80%的初始容量能够被保留.组装器件在能量密度为157.5 W·h/kg时,其功率密度可达到22.5 W/kg.经过8000圈循环测试后,器件比容量保持率为83%.本研究通过模板诱导制备的电极材料为超级电容器的应用研究提供了理论依据.
其他文献
目前,对低成本石油沥青高附加值的利用仍面临着重大的挑战.鉴于其碳含量高,本工作利用NaHCO3模板成功制备了一种掺硫多孔碳骨架(SPC)结构.随后,以低沸点的MoCl5为钼源,升华硫为硫源,在SPC表层原位生长一层MoS2纳米片,定向制备了一种三维复合结构.该材料实现了MoS2和碳基底材料的良好接触,其相互交错的结构可以大大提高电子的传递速率,缩短了锂离子和电子传输路径.另外,该材料的多孔结构为锂离子提供了丰富的反应活性位点.当作为锂离子电池阳极进行测试时,该材料经过400圈的循环后,仍然维持着1069
电解液作为电化学储能系统的重要组成部分,是决定电池容量,支撑超级电容器储能、循环稳定性等特性的关键因素之一.离子液体作为一类新型软功能材料,因其高导电率、宽电化学窗口、良好的热稳定性、无显著蒸气压等特性,被广泛应用于电化学储能元件如锂电池、超级电容器等,逐步成为传统有机电解液最佳替代者之一.目前有关离子液体电解液的设计与研究大多采用实验测试法,其搜索范围大、成本高且难以从纳微水平精确获得对其动态结构、形成机理、作用机制等深刻认识.因此,本文综述了离子液体电解液在模拟计算方面的相关进展.首先根据不同的模拟尺
基于概率统计理论的蒙特卡罗模拟(MC)在20世纪40年代由冯·诺伊曼等提出,其作为一种重要的数值计算方法,已被广泛应用于离子导体的热力学、动力学等性质的研究.然而,MC模拟在相关计算精度、模拟速度以及模拟流程自动化等方面,仍具有较大的提升空间.本文通过分析其在离子导体计算领域中哈密顿量的构建模式(如基于键价和计算或利用团簇展开将通过拟合代表性小尺寸晶胞第一性原理计算总能得到的近邻作用参数给出构型能量)以及结构演变方式(如基于单离子迁移模式假设的构型演变),提炼出一套用于分析离子导体离子输运特性及相变特性的
力学性质是材料的本质属性之一,随着锂离子电池应用于电动汽车、智能电网领域,活性材料的力学特性开始受到关注.动力电池、储能电池的循环寿命需要达到几千次,活性材料晶胞亦经历几千次规律的膨胀、收缩,材料颗粒的力学劣化成为必须面对的新挑战.本文以团队的研究结果为主,总结了锂电池层状正极材料力学劣化机制和改善措施.首先,讨论了正极材料的力学研究基础,明确正极材料符合弹性形变,可以使用胡克方程分析;其次,回顾了正极材料力学劣化行为符合“损伤-断裂”模型,应力产生缺陷,逐渐积累直至断裂,电解液会沿着裂缝扩散至电池内部发
随着锂离子电池的广泛使用,锂离子电池热安全问题日益突出.相比于成本高、破坏性大的实验方法,建模仿真因其经济、安全、快速等优势成为锂离子电池热安全研究的重要手段.本文从微观建模、单电池建模以及电池组建模三个尺度对最新的锂离子电池模型及其在热安全设计中的应用进行了综述.着重介绍了锂枝晶的生长调控和电解液的安全设计方面的模拟仿真、单电池模型与热方程耦合的应用以及锂离子电池组热模型在优化电池热管理系统方面的研究.最后总结了现有的锂离子电池热模型存在的缺陷,并对锂离子电池热模型未来的研究方法做出了展望.
前驱体制备过程中通过控制不同的反应条件可以得到形貌各异的材料,而其中氨值对于前驱体的微观形貌影响颇大.本文在不同氨值条件下制备得到形貌各异的高镍三元前驱体材料,发现低氨值条件下制备得到的前驱体表面晶须细致,内部结构密实且外部呈树杈状结构.这种条件下制备得到的前驱体材料经烧结后,一次颗粒仍呈放射状生长,且颗粒更为细长.该材料制成扣式电池后,0.2 C放电条件下比容量可达210.3 mA·h/g,首次充放电效率可达93.05%,且倍率及循环性能优异.与市面所售相同配比产品相比,放电容量提升3%.该形貌控制方法
本文对2021年度中国储能技术的研究进展进行了综述.通过对基础研究、关键技术和集成示范三方面的回顾和分析,总结得出了2021年中国储能技术领域的主要技术进展,包括抽水蓄能、压缩空气储能、飞轮储能、铅蓄电池、锂离子电池、液流电池、钠离子电池、超级电容器、新型储能技术、集成技术和消防安全技术等.研究结果表明,中国储能技术在基础研究、关键技术和集成示范方面均取得了重要进展,中国已经成为世界储能技术基础研究最活跃的国家,也已成为世界储能技术研发和示范的主要核心国家之一.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年12月1日至2022年1月31日上线的锂电池研究论文,共有3795篇,选择其中100篇加以评论.正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变.金属锂负极的研究包含金属锂的表面修饰、三维结构设计及其沉积形态和均匀性的研究.合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变
在1台共轨直喷(CRDI)柴油机上开展了不同喷射策略下桐油、乙醇与柴油混合燃料的燃烧和排放特性研究.试验结果表明:与0号柴油相比,混合燃料的着火延迟期稍长,缸内压力峰值和放热率较高,但燃烧持续期稍短;随着桐油和乙醇体积分数的增加,有效热效率(BTE)也随之增大.在低负荷时,混合燃料的CO和HC排放较高,且随着桐油和乙醇所占体积分数的增大而增加;混合燃料的NOx排放在低负荷时较低,在高负荷时略高;在高负荷时,混合燃料的炭烟排放大大减少.总体而言,混合燃料中乙醇对发动机性能的影响比桐油大.
稀薄燃烧策略可以在提高燃料效率的同时减少污染物排放,而预燃室式湍流射流点火技术作为一种强点火方式能够有效提高燃烧稳定性.采用数值模拟手段对稀薄混合气湍流射流点火燃烧特性进行研究.结果 表明:在混合气过量空气系数(φa)为1.5的情况下,湍流射流点火相较传统火花塞点火最高燃烧压力提高66.4%,NOx排放相较当量比燃烧降低93.9%;增加预燃室辅助燃料能够提高热射流初始动能,改善射流火焰结构,加速主燃室混合气消耗速率;在湍流射流点火模式下主燃室湍动能出现两个波峰,湍动能的增加对燃烧起到促进作用.