论文部分内容阅读
针对压电振动陀螺的温漂问题,采用基于粒子群的BP神经网络算法对压电振动陀螺的温度漂移现象进行建模。该算法借助粒子群算法帮助BP神经网络越过局部最小解,并通过加入高斯噪声的方式,模拟自然人脑。仿真实验表明,相对于传统的单BP神经网络算法,含有噪声的粒子群-BP神经网络算法,在精度方面提高了至少42.6%,所构建的温漂模型具有更好的非线性描述能力,从而能为压电振动陀螺提供了更高精度的零电位误差补偿;同时,在收敛速度方面快了5.2倍。