论文部分内容阅读
以多时相Landsat8影像和SRTM DEM为数据源,对南瓮河流域进行了面向对象湿地分类。为削弱高维特征集对分类精度的影响,提出一种多目标遗传随机森林组合式特征选择算法(MOGARF)进行特征集优化。利用Relief F算法对完整特征集进行特征初选,再以基于随机森林的封装式多目标遗传算法进一步提取优化特征集。将所得特征集结合随机森林分类法提取湿地信息。并将结果分别与基于完整特征集和仅采用Relief F算法及Boruta算法提取的优化特征集的3种随机森林分类结果对比。试验结果表明,采用MOGARF