Rapid removal of copper impurity from bismuth–copper alloy melts via super-gravity separation

来源 :International Journal of Minerals, Metallurgy and Materials | 被引量 : 0次 | 上传用户:caibin1226
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A green method of super-gravity separation, which can enhance the filtration process of bismuth and copper phases, was investigated and discussed for the rapid removal of copper impurity from bismuth–copper alloy melts. After separation by the super-gravity field, the bismuth-rich liquid phases were mainly filtered from the alloy melt along the super-gravity direction, whereas most of the fine copper phases were retained in the opposite direction. With optimized conditions of separation temperature at 280°C, gravity coefficient at 450, and separation time at 200 s, the mass proportion of the separated bismuth from the Bi–2wt%Cu and Bi–10wt%Cu alloys respectively reached 96% and 85% , which indicated the minimal loss of bismuth in the residual. Simultaneously, the removal ratio of impurity copper from the Bi–2wt%Cu and Bi–10wt%Cu alloys reached 88% and 98%, respectively. Furthermore, the separation process could be completed rapidly and is environmentally friendly and efficient.
其他文献
In this study, Mg–9Al–1Si–1SiC (wt%) composites were processed by multi-pass equal-channel angular pressing (ECAP) at vari-ous temperatures, and their microstructure evolution and strengthening mechanism were explored. Results showed that the as-cast micr
The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing (VT) by thermal activation and modific-ation. For activation, a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modif
This paper presents an experimental investigation of the mechanical and tribological properties of Cu–graphene nanosheets (GN) nanocomposites. We employed the electroless coating process to coat GNs with Ag particles to avoid its reaction with Cu and the
To investigate the impact of an opening and joints with different inclination angles on the mechanical response behavior, the energy evolution characteristics, and distribution law of granite specimens, uniaxial loading tests were performed on the paralle
Radioluminescence (RL) behaviour of erbium-doped yttria nanoparticles (Y2O3:Er3+ NPs) which were produced by sol–gel method was reported for future scintillator applications. NPs with dopant rates of 1at%, 5at%, 10at% and 20at% Er were produced and calcin
Mica was used as a supporting matrix for composite phase change materials (PCMs) in this work because of its distinctive morpho-logy and structure. Composite PCMs were prepared using the vacuum impregnation method, in which mica served as the supporting m
The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit. Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the exposure time from 15 to 150 s. Opti
To investigate the oxidation behavior of a nickel-based superalloy with high hafnium content (1.34wt%), this study performed iso-thermal oxidation tests at 900, 1000, and 1100℃ for up to 200 h. X-ray diffraction and scanning electron microscopy with energ
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in
The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals. We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation. By analyzing the Mg2+ concentration,