论文部分内容阅读
今年全国高考(理工农医类)数学第五题是一道很好的试题.命题如下: 设O为复平面的原点,Z_1 和Z_2为复平面内的两个动点,并且满足: (1)Z_1和Z_2所对应的复数的幅角分别为定值θ和-θ(0<θ<π/2), (2)△OZ_1Z_2的面积为定值S. 求△OZ_1Z_2真的重心Z所对应的复数的模的最小值. 应用本题给出的条件解题最基本的要求就是(复)平面上的点与复数构成一一对应.复数
This year’s National College Entrance Examination (Philosophy and Agronomy) mathematics question 5 is a good question. The propositions are as follows: Let O be the origin of the complex plane, Z_1 and Z_2 be the two motion points in the complex plane, and satisfy: (1) The complex angles corresponding to Z_1 and Z_2 are the fixed values θ and -θ (0<θ<π/2), and the area of △OZ_1Z_2 is the fixed value S. The actual center of gravity Z is equal to △OZ_1Z_2. The minimum value of the modulus of a complex number. The most basic requirement for applying the conditional solution problem given in this problem is that the point on the (complex) plane corresponds to the complex number.