论文部分内容阅读
提出一种基于卷积神经网络的高精度微孔板浑浊度分类算法。该算法主要将传统图像处理技术与卷积神经网络技术相结合,通过传统图像处理算法将圆孔从自然拍摄的微孔板图像中切割下来,并将切割下来的圆孔图像制作成圆孔数据集,用于网络模型的训练、评估和测试。同时,通过深度学习技术,设计并训练多个基于深度可分离卷积核的卷积神经网络模型,然后筛选出评估准确率最高的浑浊度分类模型,应用于圆孔识别系统,从而可提高研究人员的工作效率。