论文部分内容阅读
基于区域的局部二值拟合模型在处理灰度不均匀图像方面有较大优势,但其只考虑原始图像灰度的平均统计信息,对于包含大量噪声的图像通常很难获得理想的效果。为克服上述缺陷,提出一种基于原始图像和差分图像统计信息的分割模型。该模型在原始图像灰度统计信息的基础上,加入差分图像信息,分别对原始图像和差分图像构造以高斯函数为核函数的能量方程,并运用梯度下降法求解,驱使活动轮廓向目标边缘演化。实验结果表明,与传统活动轮廓模型相比,该模型能正确提取含有噪声和信噪比低的图像,同时对初始轮廓曲线有更高的鲁棒性。