Effectiveness of Surface Coatings Against Intensified Sewage Corrosion of Concrete

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:xmzhkj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, the strength, micrograph, mineral compositions and pore structure of concrete specimens after removing coatings were also studied. The results show that epoxy coal tar pitch coating (ECTPC) has the best effect of protecting concrete from the sewage corrosion. After being immersed in sewage for 90 days, the compressive strength of concrete coated with ECTPC is still as high as that of specimen immersed in water, and the cement paste has a high CH content and dense structure with low porosity, which mainly accounts for its excellent barrier property and certain antibacterial function. Cement-based bactericidal coating (CBC) also has good effectiveness to sewage corrosion of concrete. The strength and microstructure of concrete coated with CBC in sewage are still significantly superior to those of uncoated concrete. Although cement-based capillary crystalline waterproofing coating (CCCWC) is a good waterproof material, it is not suitable for the corrosion resistance of concrete in sewage. After 2 months corrosion, almost all of the CH crystals in coating reacted with the metabolic acid substance by microbes. Therefore, the strength and pore structure of concrete coated with CCCWC are only slightly superior to those of uncoated concrete. Overall, the protective effect of cement-based inorganic coatings is relatively poor.
其他文献
Bis[2-(3,4-epoxycyclohexyl)ethyl]octamethyltetrasiloxane is also called diepoxycyclohexylethyl octamethyltetrasiloxane. In the present paper, diepoxycyclohexylethyl octamethyltetrasiloxane was synthesized, and the synthesized product was characterized by
The adsorption behaviors and dispersing properties of polycarboxylate superplasticizer (PCE) with different functional groups were systematically analyzed to reveal the theory and methods of modifying PCE molecular structures and regulating PCE performanc
Gaskets are applied in PEMFCs (proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term
In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol (PVA)-based macromonomer and acrylic acid (AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel
Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO3 nanoparticles were precipitated on α-Al2O3 micro powders by rotary chemical vapor depositio
The influences of surfactant type and concentration on the content and uniformity of SiC particles in Ni-SiC deposit were studied in this paper. The electrochemical behavior of preparing Ni-SiC composite coating was investigated using the cyclic voltammet
A new hot mixed epoxy asphalt system was developed. The reaction process of epoxy resin was characterized by Fourier transform infrared spectroscopy (FTIR). The viscosity was investigated by Brinell viscometer when epoxy resin was mixed with asphalt. The
A simple strategy was developed to prepare a tough, self-healing, antibacterial and moldable hydrogel by introducing the natural polyphenolic compound tannic acid (TA) as a cross-linking center for hydrogen bonds. Polyvinyl alcohol (PVA)-TA hydrogel was p
Nano-spherical Co2+-doped FeS2 was synthesized through a simple solvothermal method. The products were investigated using XRD, FE-SEM, BET, ICP, EDS, TEM, HRTEM, XPS, and UV-vis spectroscopy. The results indicated that Co2+ ion could change the particle n
The La-Mg-Ni-Mn-based AB2-type La1-xCexMgNi3.5Mn0.5 (x = 0, 0.1, 0.2, 0.3, and 0.4) alloys were fabricated by melt spinning technology. The effects of Ce content on the structures and electrochemical hydrogen storage performances of the alloys were studie