论文部分内容阅读
通过对已标示和未标示数据的学习和分类,提出一种改进微分进化算法的半监督模糊聚类。先从大量的数据中选取一小部分进行标记,然后利用标记数据来指导进化过程,实现对未标记数据的分类。通过参考粒子群算法惯性权重思想,引入惯性加权系数,在计算初期能够维持个体的多样性,后期能够加快算法的收敛速度,有效提高了算法的性能。遥感图像数据实验结果显示该方法可以提高分类精度。