论文部分内容阅读
本文对火箭推进的制导飞行器,推导了一种显式最优制导方法并得到了应用。该方法为动力飞行制导中所遇到的多种边值问题提供了一般解法。控制规律的推导是很简单的,它避免了使用一些难度较大的专门数学。这种制导方法叫作E制导。这种方案最本质的特点是E矩阵,它把现时的边值条件和需用边值条件之间的分离划成为推力分配制导系数。这些系数决定着推力加速度沿被控坐标轴的分配要求。制导规律可以控制终端的位置坐标以及终端的速度分量并能控制可调推力和固定推力火箭。由于E制导具有这种普遍性的特点,所以该方法特别适用于那些具有多种要求的复杂的空间任务。对执行这种多用途任务的动力飞行制导程序作了介绍。通过把适当数量的预存程序中的子程序联结起来的办法,可以为每种类型的动力飞行制导问题提供程序方案。利用计算机的开关、转移和判定能力,可以把多用途动力飞行制导程序调整为适合于数字计算机所需要的程序。
In this paper, an explicit optimal guidance method for guided rocket-propelled aircraft is derived and applied. This method provides a general solution to many kinds of boundary value problems encountered in dynamic flight guidance. The derivation of the law of control is very simple, it avoids the use of some more difficult specialized mathematics. This guidance method is called E guidance. The most essential feature of this scheme is the E-matrix, which divides the separation between the present and the required boundary conditions into the thrust distribution guidance factor. These coefficients determine the distribution of thrust acceleration along the axis to be controlled. Guidance law can control the position of the terminal coordinates and speed components of the terminal and can control the adjustable thrust and fixed thrust rocket. Due to the universal nature of E-Guidance, this method is particularly suitable for complex spatial tasks with a variety of requirements. The introduction of a power flight guidance program to perform such a multi-purpose mission. By linking subroutines in the appropriate number of stored procedures, program solutions can be provided for each type of dynamic flight guidance problem. Using the power of the computer to switch, transfer and determine, the multipurpose dynamic flight guidance program can be adapted to the program required for digital computers.