【摘 要】
:
生活中似是而非的手语表达语义含糊,欠规范的手势动作易混淆,同时从有限样本中难以获得充足特征用于训练手语识别模型,模型容易过拟合进而导致识别准确率较低.针对此问题,提出一种在有限样本条件下扩充欠规范手语识别容错特征的表示学习方法.该方法基于手语表达时人体骨架的运动信息,面向手语的时空关联性构建自编码器,从手语语料库中少量原始样本提取标准特征;然后利用生成对抗网络从标准特征产生大量欠规范样本,再通过自
论文部分内容阅读
生活中似是而非的手语表达语义含糊,欠规范的手势动作易混淆,同时从有限样本中难以获得充足特征用于训练手语识别模型,模型容易过拟合进而导致识别准确率较低.针对此问题,提出一种在有限样本条件下扩充欠规范手语识别容错特征的表示学习方法.该方法基于手语表达时人体骨架的运动信息,面向手语的时空关联性构建自编码器,从手语语料库中少量原始样本提取标准特征;然后利用生成对抗网络从标准特征产生大量欠规范样本,再通过自编码器扩充容错特征,构建新的容错特征集用于后续任务.实验结果表明,该方法在有限样本条件下,产生的欠规范手
其他文献
针对现有目标检测算法在高压电力复杂巡检场景下电力部件与巡检缺陷检测精度较低的问题,提出一种基于尺度不变特征金字塔的输电线路缺陷检测方法。首先将主流目标检测方法用于本文场景,对比得出RepPoints v2网络模型的检测精度最高。其次,针对RepPoints v2中FPN结构不能有效提取跨层次间语义信息及角点验证过程中忽略尺度归一化的问题,结合ECA高效通道注意力模块与SEPC尺度均衡金字塔卷积提出
现有的立体匹配算法通常采用深层卷积神经网络提取特征,这种深层特征对于前景物体的检测更加精细,但对于背景中的小物体及边缘区域匹配效果较差。为了提高这些挑战性区域中的视差估计质量,文中提出一个基于视差优化的立体匹配网络CTFNet(Coarse To Fine Net)。此网络分别提取浅层与深层特征,基于深层特征构建全局稀疏代价卷预测初始视差图,然后基于预测的初始视差图和浅层特征构建局部稠密代价卷进行
针对目前舰船目标检测中,多目标情况下的舰船目标很容易被多目标给遮挡,造成舰船目标漏检、分类错误等问题,提出了一种基于改进RFBnet(I-RFBnet)的自然图像目标检测方法。首先使用池化特征融合模块(PFF)和反卷积特征融合模块(DFF)进行特征融合,形成新的六个有效特征层;其次提出一种跨步长卷积方式来提取特征单元在原图中的关心区域信息,设计了融入注意力机制的膨胀卷积模块(dilate conv
针对深度连续聚类算法(Deep Continuous Clustering,DCC)特征提取能力有限,对复杂图像不能提取足够有效细节特征的不足,本文提出一个新的循环卷积自编码器(Recurrent Convolutional Auto-Encoder,R-CAE)。自编码器结合门控循环网络GRU和卷积网络CNN构造编码层;同时在门控循环网络GRU部分添加空间域注意力通道,增强网络的特征学习能力。图
当前许多目标检测算法在非极大值抑制过程中基于分类置信度对检测框排序,但由于分类置信度与定位准确度没有一致性,通常会影响检测器的定位性能。对此提出一种基于定位置信度预测的二阶段目标检测方法,为Faster R-CNN框架添加定位置信度预测分支,对分类、边界框回归和定位置信度三个分支进行联合训练,进而将检测框的定位置信度与分类置信度相融合,设计了基于融合分数的非极大值抑制后处理算法。此外,为定位置信度
针对计算机断层扫描(CT)影像中肺结节检测灵敏度较低,且存在大量假阳性的问题,提出一种改进的U型残差网络用于肺结节检测。首先,采取U-net网络的U型结构并利用残差学习方式构建深层次网络,同时引入自校正卷积增加特征的信息提取能力,进行通道间与局部信息增强,有利于检测不同形态的结节;其次,通过引入的通道注意力机制,对特征提取过程中的特征进行重标定,实现自适应学习特征权重,进一步提高检测的准确率;另外
在粒子滤波跟踪算法运行过程中,由于目标遮挡导致丢失目标,将严重地降低跟踪精度与鲁棒性。为了解决此问题,提出了目标丢失状态判定方法和基于改进序贯相似性检测的目标位置重建方法,当检测到目标丢失时,重启跟踪算法。改进序贯相似性检测使用Bhattacharyya距离代替像素累积误差,更好地适应检测目标发生旋转、形变、缩放等情况。使用OTB-100标准数据集,将本文算法和传统粒子滤波跟踪算法、SCM等经典算
交通标志检测是智能驾驶任务中的重要一环。为了满足检测精度和实时检测的要求,基于YOLOV3提出一种改进的实时交通标志检测算法。首先采用跨阶段局部网络作为特征提取模块,优化梯度信息,减少推理计算量;同时以路径聚合网络替代特征金字塔网络,在解决多尺度特征融合的同时,保留了更加准确的目标空间信息,提高目标检测精度;并且引入完备交并比损失函数替代均方误差损失,提高定位精度。与其他目标检测算法在CCTSDB
由于汉字拥有大量的字符,大多数对汉字的研究主要集中在汉字的识别和分类问题上,对于生成汉字的研究较少,尤其是在没有大量配对的汉字数据集的情况下。该模型使用内容和风格样式都不匹配的汉字数据集,将生成个性化手写汉字的过程公式化为一个从现有的标准印刷字体到个性化手写汉字样式映射的问题。在基于无监督学习的图像翻译模型的基础上,利用注意力机制和自适应标准化层来增强个性化汉字生成的内容和风格,并且通过改进损失函
目前大量被提出的关于单目视觉深度估计网络研究中其网络结构庞大臃肿,在实际部署中会存在占用大、延迟高的问题。针对以上问题,本文提出了基于可学习步长的量化策略的轻量化深度估计网络。该网络采取特征金字塔(FPN)的网络结构对图片不同尺度的特征信息进行提取。并结合内存优化,对网络的特征提取部分采用深度可分离卷积,使得网络相对于ResNet参数总量下降1/3。同时文中对特征解码器进行设计,网络计算中跳跃连接