论文部分内容阅读
为了进一步提高农作物遥感识别精度,充分利用高分辨率遥感影像上不同地物之间的邻域空间关系,提出农作物遥感识别偏差修正的地统计学方法。该方法综合考虑目标地物的光谱特征与空间信息,以类别隶属度偏差为研究对象,首先利用类别指示向量和类别后验概率向量之间的差异实现目标地物的类别隶属度偏差量化,然后对训练样本的类别隶属度偏差进行变异函数建模,并采用带局部均值的简单克里格插值方法预测总体类别隶属度偏差,之后用总体偏差的预测值对光谱分类所得的类别后验概率进行修正,重新确定识别结果,实现农作物遥感识别的偏差修正。以安