论文部分内容阅读
在提取纹理图像的Haar型LBP特征中,人为设定的判断阈值主观性强、局部性差,导致提取的纹理细节和边缘模糊、纹理图像的局部性易被忽略。为此,提出了一种自适应的Haar型LBP纹理特征提取算法。该算法在二值化Haar型特征时引入高斯加权矩阵,以此获得客观、符合纹理图像局部特征的自适应判断阈值和Haar型LBP特征。实验结果表明,该算法能够有效地避免人为设定阈值对纹理特征的影响,可以准确地描述图像的纹理特征,Brodatz标准纹理库分类的正确率也得到了进一步的提高。