Creep Model of High-Strength High-Performance Concrete Under Cyclic Loading

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:fengjikun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete (HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loadingγcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.
其他文献
Strontium titanate (SrTiO3) submicron-fibers with perovskite structure were successfully synthesized by electrospinning method. The nanomechanical properties of synthesized SrTiO3 were investigated by the novel amplitude modulation-frequency modulation (A
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model.The random distribution of fiber strength was expressed by the two-parameter Weibull function
The wetting behavior of Cu-Ti powder compacts with 22 wt % Ti and 50 wt % Ti on carbon materials, including graphite and carbon fiber reinforced carbon composites (CFC), has been investigated in a vacuum using the sessile drop method. The equilibrium cont
Diffusion bonding between Al and Cu was successfully performed by hot isostatic pressing (HIP). To improve the strength of diffusion bonding joint, pure nickel foils with different thickness were used as intermediate layer. Microstructure of the interface
A high strength self-compacting pervious concrete (SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations (0%, 3%, 5%, 10%, and 20%) was investigated. The
The phosphorus slag (PS) can be used as a supplementary cementitious material due to its potential hydrating activity. However, its usage has been limited by its adverse effects, including prolonged setting and lowered early-stage strength. In this study,
In order to investigate the effect of the thickness on the electrical conductivity of yttria-stabilized zirconia (YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52μm was prepared by magnetron sputtering through contro
The influence of replacement level of calcined coal-series kaolin (CCK) on hydration of ordinary Portland cement (OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase comp
A new appraisal method (QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by