论文部分内容阅读
传统文本挖掘算法都是建立在凸球形的样本空间上,当样本空间不为凸时,算法就陷入“局部”最优。为了满足“全局”最优,引进了无向图结构表示文档之间的相似关系,由无向图建立文档之间的相邻接矩阵,谱聚类算法是通过对邻接矩阵进行分析,导出聚类对象的新特征,利用新的特征对原数据进行聚类。通过实验对该算法和其他的文本挖掘的算法进行分析比较,实验结果表明该算法聚类效果比传统数据挖掘方法好。最后指出谱聚类的不足和进一步的研究方向。