论文部分内容阅读
采用数值模拟方法,在模拟自然风和均匀风风速分别为30m/s的情况下,研究不同高度桥梁上列车受到的横向力和侧滚力矩,导出了桥梁上车辆的横向力系数和侧滚力矩系数的表达式。计算结果表明:桥高为30m时,采用模拟自然风计算得到的横向力和临界倾覆点处侧滚力矩比采用均匀风得到的计算结果分别大约58%和63%,且桥梁越高,计算结果差别越大;车体周围的流场与速度矢量分布方式相似,但采用模拟自然风时,车体的表面压力最大值和车体周围的速度最大值分别为1.14kPa和67.6m/s,远大于采用均匀风时的最大值0.82kPa和58.8m/s;车辆受到的横向力、侧滚力矩基本上与车辆形心处的风速的平方成正比;车辆的横向力系数和侧滚力矩系数均与桥梁的高度呈指数关系,当量横向力系数为0.974,当量车体重心处的侧滚力矩系数为0.082,当量临界倾覆点处侧滚力矩系数为0.592。
The numerical simulation method was used to study the lateral force and rolling moment of the train on different height bridges under the conditions of natural wind and uniform wind velocity of 30m / s respectively. The transverse force coefficient and rolling moment The expression of the coefficient. The calculation results show that when the bridge height is 30m, the calculated lateral force at the simulated natural wind and the roll moment at the critical tipping point are respectively 58% and 63% compared with the uniform wind, and the higher the bridge, the calculated result The bigger the difference is. The distribution of flow field and velocity vector around the vehicle body is similar, but the maximal surface pressure and the maximum speed around the vehicle body are 1.14kPa and 67.6m / s respectively when simulating natural wind, The maximum value of 0.82kPa and 58.8m / s for uniform wind are obtained. The transverse force and rolling moment of the vehicle are basically proportional to the square of the wind speed at the centroid of the vehicle. Both the lateral force coefficient and roll moment coefficient And the height of the bridge is exponential, equivalent lateral force coefficient of 0.974, equivalent body mass center roll moment coefficient of 0.082, equivalent amount of critical rollover point rolling moment coefficient of 0.592.