接触应力对FCB车轮钢组织演变与性能的影响

来源 :摩擦学学报 | 被引量 : 0次 | 上传用户:singleitol
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用双盘滚动摩擦磨损试验机进行了贝氏体车轮钢的滚动磨损试验,采用扫描电子显微镜(SEM)、电子背散射衍射(EBSD)分析不同接触应力条件下贝氏体车轮钢次表层微观组织演变.结果表明:在滚动磨损条件下,磨损机制由黏着磨损转变为疲劳磨损,增大接触应力对黏着磨损阶段的磨损量影响不大,但会显著增加疲劳磨损阶段的磨损量;贝氏体车轮钢在塑性变形的过程中,贝氏体铁素板条中位错逐渐增值、先累积形成小角度晶界,而后形成大角度晶界,使贝氏体铁素体发生细化;接触应力的大小影响表层组织的演变,当接触应力增至1 150 MPa时,晶粒细化为超细等轴晶,继续增加接触应力,组织变化并不明显.接触应力大小会影响贝氏体车轮钢的表面硬度.接触应力增加使贝氏体车轮钢的表面硬度增高,硬化层深度增大.
其他文献
基于工程应用中微点蚀与热胶合随机发生现象,阐述了两种失效模式的损伤机理,分析了两者发生模式转变的关联规律,并提出了大扭矩宽速域传动齿轮微点蚀与热胶合竞争性失效机制的理念;在润滑油膜厚度和瞬时啮合温度计算方法的基础之上,建立了两者强度校核的统一评价准则,并基于试验测试,验证了本文中所采用技术原理的合理性与正确性,最终确定了 18CrNiMo7-6与普通矿物油组合的抗微点蚀与抗胶合承载能力关联校核方法;同时,结合计算分析与试验测试,给出了热胶合发生的极限啮合温度,并通过油膜厚度和表面粗糙度的比较,推荐了微点蚀
以胆碱和杂环二酸为原料,在去离子水中原位制备了添加剂[Ch]2[Hdc],并研究了它们的摩擦学性能、腐蚀性、水生生物毒性与分子结构之间的构效关系.研究发现,水溶液的运动黏度随着水中生成的[Ch]2[Hdc]浓度的增加而增大,并且当[Ch]2[Hdc]的分子结构对称性较低、极性较大时,水的黏度增加值相对较大.这是由于添加剂分子极性较大时,分子间相互作用力较大,导致溶液的黏度增幅更大.摩擦学性能测试发现,当[Ch]2[Hdc]的浓度相对较低时,水溶液的减摩抗磨性能与[Ch]2[Hdc]分子在摩擦副表面的吸附能
为深入了解纳米金属多层膜在沉积法交替制备中,因晶格失配制备出不同半共格界面的金属多层膜受载诱导的力学特性差异的机制,本文作者基于经典力学的分子动力学法,对半共格Cu基Ni膜和Ni基Cu膜两种界面结构的力学性能展开探析,揭示出多层膜半共格界面失配位错网与压痕诱导产生可动位错的相互作用规律.研究发现:铜镍双层膜半共格界面结构可有效提升力学性能,归因于铜镍半共格界面受载产生的柏氏矢量Shockley分位错的差异.Cu基Ni膜半共格界面上的失配位错网对压痕中产生的可动位错表现为排斥,有利于位错穿透半共格区域进入铜
采用激光表面纹理化在WC-8C0上制备了微沟槽织构,通过往复式摩擦磨损试验对其与Ti6A14V接触的耐磨性进行分析,并以无表面微沟槽织构的WC-8Co为对比样品,研究了表面微织构对WC-8C0粘结-扩散磨损特性的影响,揭示了摩擦过程中表面微织构的磨损机理.结果表明:WC-8C0上的微沟槽对摩擦接触面具有抗粘结作用,在高接触载荷下,这种效应更为明显.织构表面的抗粘结机制是由微沟槽包裹的碎屑产生的.此外,与无表面微织构的WC-8Co不同,表面织构化的WC-8Co的磨损最初来源于微沟槽边缘的断裂,随后扩展到摩擦
使用离子液体[EMIm]BF4分散多壁碳纳米管(MWCNTs),再以[EMIm]BF4-阿拉伯树胶(GA)为添加剂分散二硫化钼(MoS2),二者的水溶液复配得到复合纳米流体.采用拉曼光谱分析了MWCNTs的改性度,通过吸光度和粒度对复合纳米流体的分散与悬浮稳定性进行了表征.对不同纳米颗粒配比的复合纳米流体润湿性能和摩擦学性能进行测试,结果表明:MWCNTs和MoS2质量分数为0.6%、1.2%时复合纳米流体的铺展成膜能力最好,其接触角约为63.04°,相比于去离子水降低了23.55%.摩擦磨损测试结果也表
提出了一种固体表面热变形求解新方法(ITD),由此研究了热变形对高速点接触弹流润滑行为的影响.为此,基于计入流体惯性项的Reynolds方程获得了油膜压力,采用追赶法对润滑剂和接触固体的温度进行了求解,进而研究了不同工况下有无热变形的高速点接触非牛顿热弹流润滑性能.采用有限元法和离散累加法对ITD法进行了验证,通过中心膜厚试验验证了考虑热变形的正确性.结果表明:ITD法可准确快速地计算表面热变形;考虑热变形后,油膜厚度降低且向油膜出口倾斜,考虑热变形后的中心膜厚更接近试验结果.
石墨烯作为一种固体润滑剂,广泛应用于微纳机械设备中.尽可能地减少石墨烯的摩擦是提高器件性能、延长器件寿命的关键措施.采用改变石墨烯表面作用区域的方法对石墨烯与探针尖端的摩擦进行了研究.利用锥形探针和球形探针测量了石墨烯与Si02/Si基底的边界位置及到石墨烯中心区域之间的平均摩擦力.结果表明:对于单层石墨烯,在锥形探针的作用下,石墨烯中心区域的平均摩擦力明显大于其边界区域处的平均摩擦力;而在球形探针的作用下,石墨烯的平均摩擦力随所选区域的变化不明显.对于多层石墨烯,在两种探针作用下,石墨烯的平均摩擦力随所
微动疲劳是矿井提升钢丝绳主要失效形式之一,在钢丝微动疲劳过程中,微动磨损严重影响钢丝微动疲劳裂纹扩展特性,进而制约钢丝微动疲劳断裂机制,故开展考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究至关重要.运用自制钢丝微动疲劳试验机开展钢丝微动疲劳试验和拉伸断裂试验,通过高速度数码显微系统揭示微动疲劳过程中钢丝微动磨损演化、裂纹萌生和扩展及断裂特性,基于摩擦学和断裂力学理论,运用有限元法、循环迭代法和虚拟裂纹闭合技术建立了考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测模型,并进行试验验证.结果表明:采用微动疲劳过程稳
高速球铣加工表面通常具有一定的残留形貌,采用Matlab形貌仿真与切削加工试验研究了高速球铣加工表面微沟槽形貌的形成方法;并基于流体动压润滑理论,通过Fluent流体仿真与润滑工况下的滑动摩擦试验,研究了表面微沟槽形貌的承载能力关于滑动速度和径向切深的响应规律,并分析了减摩机理.结果表明:当给定每齿进给量后,随着径向切深的增大,可以获得具有微沟槽特征的表面形貌.微沟槽承载能力随着滑动速度的提高而逐渐增 大;随着径向切深的提高,承载能力呈现先增后减的趋势,这是由于其与楔形效应和逆流现象交互作用影响相关,当径
建立迷宫-蜂窝混合型密封三维数值分析模型,研究密封在阻塞/非阻塞流动状态及不同偏心率下静态稳定性与泄漏特性,并与传统迷宫密封进行对比分析.结果表明:两种不同结构型式的密封泄漏量均随偏心率的增大而增加,但迷宫-蜂窝混合型密封相较于传统迷宫密封有更好的封严性能.在阻塞与非阻塞状态下,两种密封均表现为负的静态刚度系数,系统易产生静态失稳现象.与传统迷宫密封相比,迷宫-蜂窝混合型密封静态刚度系数绝对值较小,稳定性较高.