论文部分内容阅读
针对基本差分进化算法收敛速度较慢的问题,将粒子群优化算法中的社会学习部分引入到差分进化算法中,提出一种改进的差分进化算法。该算法通过小概率随机变异操作增加种群的多样性和全局搜索能力;变异向量和个体向群体最优个体学习的结果进行交叉操作,利用最优个体指导进化过程,加快了算法的收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。