Investigation on magnesium degradation under flow versus static conditions using a novel impedance-d

来源 :自然科学进展(英文版) | 被引量 : 0次 | 上传用户:fenghuazz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This article reports a novel impedance-driven flow apparatus and its applicability for studying magnesium degradation under flow versus static conditions. Magnesium has potential to be an effective biomaterial for use inside the human body due to its biodegradability and biocompatibility. Magnesium undergoes degradation reactions in aqueous solutions such as body fluids, leading to mass loss and pH increase of the surrounding fluid. To compare the degradation process of magnesium under flow versus static conditions, a novel flow apparatus consisting of an impedance pump and a flow chamber was designed and constructed. In addition to low-cost, this apparatus is flexible to be sterilized and assembled, and is small enough for use inside an incubator, making it appealing for measuring and comparing magnesium degradation in vitro under flow versus static conditions. The average flow rate in this flow apparatus was 2.8 ml/s, mimicking the flow rate (2.6 ml/s) in coronary artery. In a simulated body fluid (SBF), magnesium samples lost their mass at a much faster rate under the flow condition than that under the static condition. Starting with a pH of 7.4, the SBF showed a pH increase to 8.5 under the flow condition within 96 h due to the degradation of magnesium, greater than the pH increase under the static condition. The results of this study demonstrated the effects of fluid flow on magnesium degradation using the impedance-driven flow apparatus, providing useful design guidelines for magnesium-based implants that may be exposed to body fluid flow.
其他文献
Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed
The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM?) were studied in the present work. The exp
The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPM
With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradu
Magnesium alloys have, in recent years, been recognized as highly promising biodegradable materials, especially for vascular stent applications. Forming of magn
The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it i
The ZK60 magnesium alloy has been modified by Fe ion implantation and deposition with a metal vapor vacuum arc plasma source. The surface morphology, phase cons
The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body