“南海Ⅰ号”沉船木材的微束X RF面扫描分析

来源 :光谱学与光谱分析 | 被引量 : 0次 | 上传用户:qfcywm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
“南海Ⅰ号”是一艘南宋时期的木质商船,沉没于我国广东省阳江市东平港以南约20海里处,发现于1987年,经多次水下考古调查后,于2007年严格按照水下考古规范,成功地将其整体打捞出水,迄今为止中国境内发现的年代最早、船体最大、保存最完整的古沉船.由于在海底埋藏达800年之久,因此船体和及其所承载的木质文物,在海水中盐份以及各种微生物的协同作用下,发生了严重的物理化学和生物降解作用,使得原有的木材成分大量降解流失,木质纤维间的支撑力减少,导致强度降低,结构糟朽.硫铁化合物是海洋出水木材的重要病害来源,因此铁、硫元素的含量、分布以及赋存状态,对海底出水有机质材料的研究和保护具有重要的学术价值.由于制样和传统方法限制,难以对出水木材中的铁和硫进行原位无损分析,同时分析速度和测量成本亦是难以克服的困难.微束X射线荧光技术,特别是基于常规X光管的微聚焦技术,为该问题提供了便捷、快速、可靠、无损和低成本的解决方案.基于此,选择“南海Ⅰ号”出水船体为研究对象,应用最新的多导毛细管微聚焦X射线荧光光谱技术,并结合拉曼光谱分析,对出水木材中的铁、硫含量和分布进行了面扫描分析.结果指出,样品中的铁、硫元素分布不均,存在多种赋存形态,揭示了元素分布特点和规律为研究水木材中硫、铁的来源、富集以及耦合关系等提供了线索.研究表明,微束XRF技术可有效分析不规则、不均匀的饱水木材中不同部位铁、硫丰度,在二维尺度上揭示元素的分布情况以及其相关性.研究结果可为探讨海洋出水木材中的硫、铁及其化合物的沉积和循环机制以及相关文物保护和修复工作,提供重要的科学支持和有益借鉴.
其他文献
溶解性有机质(DOM)在自然生态系统有机物向无机物的转换过程中起重要作用。DOM在发酵过程中为微生物提供营养和能量,同时对腐殖质的迁移和转化具有重要的指示作用。牛粪有助于提高玉米秸秆腐殖化效率,使农业废弃物得以更好的利用。为探讨玉米秸秆-牛粪体积比2∶8(T1)、4∶6(T2)、6∶4(T3)和8∶2(T4)处理发酵过程中DOM的特征,采用三维荧光光谱-平行因子分析法,分析发酵底物中DOM的荧光组分;通过荧光指数(FI)和自生源指数(BIX)来表征DOM的来源,用腐殖化指数(HIX)分析发酵物料的腐殖化程
X射线光源的焦斑尺寸和焦深对X射线光谱学,尤其是对于微区X射线衍射与荧光分析等领域十分重要的参数。如何高效而准确的表征这些参数对于X射线光源的应用和发展至关重要。现有的光源参数表征方法,尤其在表征微焦斑光源的参数时,都存在自身的局限性。锥形单玻璃管X射线聚焦镜是一种常用的X射线聚焦器件。根据锥形单玻璃管X射线聚焦镜滤波特性和几何特点,分析得到聚焦镜的聚焦光能量上限的大小受到光源焦斑尺寸的影响,提出这个能量上限与光源尺寸和光源到聚焦镜入口的距离之间的数学关系。设计了一种基于锥形单玻璃管X射线聚焦镜的表征X射
通过分析28种芬太尼类物质的红外和拉曼光谱,研究了芬太尼类物质的振动光谱特征,考察了红外和拉曼光谱对芬太尼类物质的区分能力。整体上看,芬太尼类物质的红外和拉曼光谱表现出不同的光谱特征,具有互补性。在红外光谱中,不同盐型芬太尼类物质在3200~2000 cm-1区间差异显著,碱型化合物在2972~2952 cm-1存在强的吸收峰,盐酸盐化合物在2600~2320 cm-1存在中等强度的多重吸收峰,枸橼酸盐化合物在3100~2800 cm
硬X射线调制望远镜是我国第一颗X射线天文卫星,其载荷低能X射线望远镜采用了SCD型探测器CCD236,主要对能量在0.7~13.0 keV的软X射线光子进行观测。卫星发射前,需要对探测器进行详细的性能标定,其中包括能量响应矩阵的标定。能量响应矩阵是能谱分析的关键。CCD236探测器输出能谱并不是观测光源的真实发射谱,而是发射谱与探测器能量响应矩阵的卷积结果。一般可以通过直接反卷积的方法还原光源的真实能谱。解谱过程可以看作是一维成像问题,利用能量响应矩阵与输出能谱进行反卷积解谱。常用的反卷积算法为Lucy-
针对当前地表水体有机污染的原位快速监测需求,提出一种基于三维荧光光谱技术的水质指标预测模型和水质等级快速判断方法。以扬州市域内多种地表水体的水质监测数据作为模型训练样本,充分利用水体三维荧光光谱信息,结合线性支持向量回归算法(LIBLINEAR),建立了与化学需氧量(CODCr)、高锰酸盐指数(CODMn)、氨氮(NH3-N)、总磷(TP)、总氮(TN)和五日生化需氧量(BOD5)6项有机污染相关水质指标的预测模型。研
植物激素脱落酸(ABA)是植物通过自身代谢产生的有机信号小分子,在极低浓度下可对植物自身产生明显的生理效应,是植物体内五大内源激素之一,因能促进植物叶片的脱落而得名,主要存在于植物干枯的叶子,根茎、种子等部位。由于对植物生长的调节能力,ABA在农业工程领域有着极大的应用前景。然而,ABA在植物体内的浓度很低,实现超低浓度检测是ABA应用的关键。关于ABA的检测,文献中已经报道的方法有很多,但是利用拉曼光谱技术对ABA的理论和实验研究还未见报道,拉曼光谱技术有着样品前处理简单、分析速度快、对于检测人员要求低
X射线衍射光谱、拉曼光谱和紫外可见透射光谱技术是薄膜材料检测的重要技术手段。通过对薄膜材料光谱性能的分析,可以获得薄膜材料的物相、晶体结构和透光性能等信息。为了解厚度对未掺杂ZnO薄膜的X射线衍射光谱、拉曼光谱和紫外可见透射光谱性能的影响,利用溶胶-凝胶法在石英衬底上旋涂制备了不同厚度的未掺杂ZnO薄膜样品,并对薄膜样品进行了X射线衍射光谱、拉曼光谱和紫外可见透射光谱的检测。首先,通过X射线衍射光谱检测发现,薄膜样品呈现出(002)晶面的衍射峰,ZnO薄膜为六角纤锌矿结构,均沿着C轴择优取向生长,且随着薄
在进行能量色散X射线荧光(EDXRF)的解谱操作时,如果样品中元素含量不高,单个元素的谱峰形状在混合样品谱中会保持较好,纯元素谱剥离是一种比较好的解谱方法,同时,在不高的含量范围内,谱峰强度与元素含量的线性关系保持较好,定量较为准确;但在常量分析中,元素之间会存在较强的吸收增强效应,并导致混合样品谱中单个元素的贡献与其纯元素谱的形状不一致,因此,用固定形状的纯元素谱剥离方法就会有较大偏差。同时,吸收增强效应会干扰谱峰强度与元素含量的线性关系,两种因素的叠加,导致元素定量的不准确,因此,在进行常量分析时,简
提出了一种基于银修饰的微腔型光纤表面增强拉曼散射(SERS)探针,采用湿法检测,将光纤SERS探针直接放入待测溶液中,以罗丹明6G(R6G)溶液为探针分子,对所制备的光纤SERS探针进行远端实验性能研究。利用氢氟酸化学腐蚀的方法制备了一种微腔型光纤结构,通过控制氢氟酸的腐蚀时间得到了一系列不同腐蚀时间、不同微腔长度的光纤结构。实验研究了光纤结构的微腔长度对光纤SERS探针性能的影响,以浓度为10-3 mol·L-1的R6G溶液为探针分子,通过不断地优化纳米银溶胶与R6G溶液的混合顺序
重金属污染是土壤环境污染中亟待解决的问题之一,重金属通过土壤向植物富集,危及人体健康,对生态环境产生巨大隐患。传统的土壤污染监测以化学方法为主,不仅费时费力且监测范围有限,而基于植被高光谱技术的土壤重金属监测方法能够快速准确地获取土壤重金属含量,突破植被屏障,提高土壤重金属监测效率。近年来,国内外许多学者致力于使用盆栽实验定量研究土壤污染物对植物光谱特征影响,而野外环境下的实验研究相对缺少,因此建立合适准确的野外土壤重金属预测模型具有重要意义,为改善耕地土壤质量提供参考。以北京市优势经济果树桃树为研究对象