论文部分内容阅读
本文主要研究广义的Camassa-Holm方程Cauchy问题当初值u 0在空间H1(R)∩W1,∞(R)时解的弱适定性。首先运用特征线把广义的Camassa-Holm方程转化成类似常微分方程(Ordinary Differential Equation,ODE)的方程。其次运用ODE理论证明新方程解的局部存在唯一性。最后利用新方程与原方程的关系,证明原方程解的局部存在唯一性并且给出解对初值的弱连续依赖性。