论文部分内容阅读
现今社会人工智能技术快速迭代发展,其应用也越发广泛,包括搜索、数学优化、逻辑推演等工具都应用了人工智能技术。神经网络作为人工智能的重要方法正在被不断地深入研究,而BP神经网络是经典的神经网络之一,在语音分析、图像识别、数字水印、计算机视觉等应用领域都取得了显著的效果。在对BP神经网络进行训练时,学习率的设置是众多参数中至关重要的一项。学习率选取不当将直接导致模型收敛速度慢、模型易越过全局极小值点等问题。针时BP神经网络中的学习率选取开展研究,将传统的固定学.--/率优化为变化学习率,从而有效地提高了BP神