论文部分内容阅读
直接将时域或者频域作为低层输入信息构建深度学习故障诊断模型,可以有效的削弱人为因素的干扰,进一步提高人工智能在故障诊断领域的发展。然而,低层输入的时域信号长度难以划定,而频域信号的数据长度较大,导致模型的计算效率降低。针对该问题,提出预先对低层频域信号提取包络线,得到表征频域变化态势的信息成分,接着再与稀疏自编码结合构建稀疏自编码的故障诊断模型。齿轮箱故障诊断实验证明,与原始频域输入相比,所提方法能够在保证诊断效果的同时,降低计算复杂度和所需要的存储空间。