论文部分内容阅读
In this study, we discussed the necessity of human IgG1 Cγ1 domain for recombinant antibody using computeraided homology modeling method and experimental studies. The heavy (VH) and light (VL) chain variable regions of 1-28, a murine IgM-type anti-CD20 mAb, were ligated by linker peptide (Gly4Ser)3 to form the single-chain Fv fragment (scFv). Then, the engineered antibody (LH1-3) was generated by fusing scFv with the entire IgG1 heavy constant regions. The 3-D structure of LH1-3 was modeled using computer-aided homology modeling method and the binding activity of LH1-3 was evaluated theoretically. Compared to the 3-D structure of the Fv fragment of the parent antibody, the conformation of the active pocket of LH1-3 was remained because of the rigid support of Cγ1.Further experimental results of flow cytometry showed that the engineered anti-CD20 antibody possessed specifically binding activity to CD20-expressing target cells. The anti-CD20 antibody fragments could also mediate complement-dependent cytotoxicity (CDC) of human B-lymphoid cell lines. Our study highlights some interests and advantages of a methodology based on the homology modeling and analysis of molecular structural properties.