目标引领下的解题与解题教学——以一道高考题为例

来源 :中学数学教学参考 | 被引量 : 0次 | 上传用户:hyx19841101
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对2021年高考数学新高考卷Ⅰ第19题,给出其多种解法并做对比分析,剖析学生解题过程中存在的问题,探讨目标引领下的解题与解题教学,提出基于宏观、中观、微观的解题目标体系.并以2021年高考数学新高考卷Ⅰ第19题为例,给出解题教学问题串设计要点,突出解题与解题教学既要讲逻辑,也要讲情理,追求自然的解题思维过程.
其他文献
集合的定义有两种,一种是描述性定义,另一种是公理化定义.公理化定义虽然很好地解决了已知的集合论悖论,但是没有明确集合是什么.所以这可能就是迄今为止,为什么对集合这个概念不加定义且只给出描述性定义的原因.
本文结合正在开展的课题研究,借助日常数学教学实践,阐述了高中数学生长型课堂理念,及这一理念指导下的数学知识形成、数学解题教学、数学教学设计的流畅性,以解决一些数学问题,进而提升师生的数学核心素养.
核心素养视角下的单元起始课,要让学生学会研究新对象的基本方法和基本思路.直观感知、操作确认、推理论证是研究立体几何的一般过程.本节课主要教给学生建构研究立体几何的基本方法和思路,为其后续学习面面平行、线面垂直、面面垂直奠定基础,同时注重提升学生直观想象、逻辑推理等数学核心素养.
本文给出了二面角问题的一种新解法,运用该解法可以快速、简洁地解决2020年广州市高三一模和2019年高考数学全国卷中二面角相关的试题.
在数学教学中,定义和概念是“根”,教师在教学中要关注概念形成的过程.本文以人教A版《数学》(选修2-1)的“椭圆及其标准方程”一节为例,通过设计一系列问题引导学生细心观察,合情推理,大胆猜想,严谨求证.
课例着力于通过单位圆的旋转对称性证明两角差的余弦公式,渗透数形结合思想,发展学生的数学抽象与逻辑推理素养.深刻领会本节的地位和教学价值,有利于提高学生的数学核心素养.
平面解析几何是高中数学教学的重点和难点,突破难点的关键是对问题实施“转化”.本文以4道例题来设计教学,阐述在解析几何问题的求解中如何实现常用的几种转化,寻找问题解决的思维路径,结合相关的数学思想,突破思维难点,灵活化解求解难度,在落实“四基”上培养“四能”,进而发展学生的数学核心素养.
人教A版普通高中数学教科书中设置了“探究与发现”栏目,旨在培养学生发现问题、分析问题和解决问题的能力,本文以“祖暅原理与柱体、锥体的体积”为例,谈一谈“探究与发现”的内涵与价值.
数学课堂成为探究平台的目的 是实现学生的深度学习,提升学生的数学学科核心素养.本文以一道立体几何试题的讲评为载体,从不同角度探寻问题的解决方案,通过搭建探究平台,鼓励学生动脑思考,挖掘其数学本质.
高考数学试题涉及高中数学的必备知识和关键能力,蕴含丰富的数学素养与核心价值,是高校选拔人才的依据,也是高中数学教学的导向标,因此,研究高考试题、领会命题意图是提高高考复习效率的关键.本文以2021年高考数学全国乙卷第19题数列题教学为例,谈谈自己的教学过程、设计意图以及教学思考.