论文部分内容阅读
为了消除自然语言对构件文本信息描述的二义性以及增强术语间的语义关系,文中采用领域本体的思想,给出了一个基于人工智能领域本体的软件构件聚类模型和基于该模型的聚类算法。该模型通过分析领域的共同概念,形成领域本体知识库,提供领域内一致认可的术语,用于匹配对构件文本描述所使用的自然语言。给出的算法通过与基于传统空间向量的K—Means算法分析比较,验证了该算法是有效的,实现了对软件构件更合理的聚类,提高了构件检索的效率和准确性。