论文部分内容阅读
矢量量化(VQ)方法是文本无关说话人识别中广泛应用的建模方法之一,它的主要问题是码本设计问题。语音特征参数是高维数据,样本分布复杂,因此码本设计的难度也很大,传统的LBG算法只能获得局部最优的码本。提出一种VQ码本设计的新方法,将小生境技术与K-均值算法融入到免疫算法训练过程中,形成混合免疫算法,采用针对高维数据聚类的改进变异算子,降低了随机变异的盲目性,增强群体的全局及局部搜索能力,同时通过接种疫苗提高算法的收敛速度。说话人识别实验表明,与传统LBG和基于混合遗传算法的VQ码本设计方法相比,该方法