Tuning the optoelectronic properties of vinylene linked perylenediimide dimer by ring annulation at

来源 :能源化学 | 被引量 : 0次 | 上传用户:superdai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Among various perylenediimide (PDI)-based small molecular non-fullerene acceptors (NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will destroy the effective conjugation.Thus,ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport,but the systematic study has attracted few attentions.Herein,we choose a simple vinylene linked PDI dimer,V-PDI2,and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers,namely V-TDI2,V-FDI2,V-PDIS2 and V-PDISe2 respectively.The former two are incorporated thianaphthene and benzofuran at the inside bay positions,and the latter two are fused thiophene and selenophene at the outside bay positions,respectively.Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration,the former two tend to be planar structure and the latter two maintain the distorted backbone.The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage (Voc),while the outside-fused PDI dimers afford large short-circuit current density (Jsc)-This variation tendency results from the reasonably tunable energy levels,light absorption,molecular crystailinity and film morphology.As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency (PCE) of 6.51%,and PBDB-T:V-FDI2 device realizes the highest Voc of 1.00V.This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.
其他文献
Porous carbon materials with developed porosity,high surface area and good thermal-and chemical-resistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur
Research on asymmetric A-D-A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building
Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting.Herein,we adopt a nitrogen doping method to fabricate self-supported N-doped CoO nanowire
Dry-spun Carbon Nanotube (CNT) fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy (SEM),Raman spectroscopy,and X
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluat
Ethyl-(2,2,2-trifluoroethyl) carbonate (ETFEC) is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4 (LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework (MOF) and their derived materials have e
Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction (OER) is considered as the bottleneck reaction in an overall water splitting system because it in
The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for